K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 7 2017
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
MT
0
NT
1
16 tháng 6 2016
Ta có: \(3\left(2x+9\right)^2\ge0\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
=> \(3\left(2x+9\right)^2-1\ge-1\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
Vậy GTNN của \(3\left(2x+9\right)^2-1\) là -1 với \(x=-\frac{9}{2}\)
\(A=\)\(36x^2\)\(+\)\(24x\)\(+7\)
\(\Leftrightarrow\)\(A=36x^2+24x+4+3\)
\(\Leftrightarrow\)\(A=\left(6x+2\right)^2+3\)
Vì \(\left(6x+2\right)^2\)\(\ge0\) nên \(A\ge3\)
\(\Rightarrow GTNN\)của \(A\)là \(3\) khi \(\left(6x+2\right)^2=0.\)
\(\Leftrightarrow\)\(x=-\frac{1}{3}\)
Vậy GTNN của \(A\)là \(3\)khi \(x=-\frac{1}{3}\)