K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^4y^4-2x^2y^2\right):x^ny^n=x^{4-n}y^{4-n}-2x^{2-n}y^{2-n}\)

Để đây là phép chia hết thì 2-n>=0

hay n<=2

27 tháng 1 2021

nhanh nha

 

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

19 tháng 4 2017

bài 1:

\(a+b\ge1\Leftrightarrow b\ge1-a\)

khi đó \(A\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)

\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}=a^2+\dfrac{1}{8a}+\dfrac{1}{8a}+\dfrac{3}{4}\)

Áp dụng BĐT cauchy:\(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\ge3\sqrt[3]{a^2.\dfrac{1}{8a}.\dfrac{1}{8a}}=\dfrac{3}{4}\)

\(\Rightarrow A\ge\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)

Dấu = xảy ra khi \(a^2=\dfrac{1}{8a}\Leftrightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)

Vậy AMIN=\(\dfrac{3}{2}\)khi \(a=b=\dfrac{1}{2}\)

20 tháng 4 2017

\(Pt\Leftrightarrow x^4-2x^3+6x^2-32x+40=\left(2y-1\right)^2\)

\(\Leftrightarrow\left(x^2+2x+10\right)\left(x-2\right)^2=\left(2y-1\right)^2\)

cách of thím thế này hả

13 tháng 2 2022

giúp mình bài này với ah.

14 tháng 2 2022

cho hỏi có phải bạn đang làm đề amsterdam phải không =)))