K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VE
1
23 tháng 6 2020
\(\Rightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2020\)
\(x^2.\left(x+y-2\right)-y\left(x+y-2\right)+y+x+2020\)(1)
Thay x+y-2=0 vào (1) , ta được :
\(x^2.0-y.0+y+x+2020\\ =0+y+x+2020\)
\(=x+y+2022-2\\ =\left(x+y-2\right)+2022\\ \)(2)
Thay x+y-2 vào (2), ta được
\(=0+2022=2022\)
_ Tham khảo thôi ậ, nếu sai thì mong mn thông cảm_
_# yum #_
BS
1
H
0
TV
0
QA
0
\(x^3+x^2y-2x^2-xy-y^2+3y+x+2020\)
\(\rightarrow\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x+2020\)
\(\rightarrow x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+2022\)
\(\rightarrow x^2.0-y.0+0+2022\)
\(\rightarrow2022\)
\(\text{Vậy}:\)\(x^3+x^2y-2x^2-xy-y^2+3y+x+2020=2022\)