Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{258^2-242^2}{254^2-246^2}\)
\(=\frac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}\)
\(=\frac{16.500}{8.500}\)
\(=2\)
p/s: chúc bạn hk tốt
Cho biểu thức P = x(x – y) + y(x + y) – y 2 . Khẳng định nào sau đây là đúng?
A. Giá trị biểu thức P không phụ thuộc vào giá trị của x và y.
B. Giá trị biểu thức P phụ thuộc vào giá trị của x và y
C. Giá trị biểu thức P chỉ phụ thuộc vào giá trị của x.
D. Giá trị biểu thức P chỉ phụ thuộc vào giá trị của y.
Bài làm:
\(P=x\left(x-y\right)+y\left(x+y\right)-y^2\)
\(=x^2-xy+xy+y^2-y^2\)
\(=x^2\)
Vậy biểu thức P chỉ phụ thuộc vào giá trị x.
Chọn C.
a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)
=>4x-4>=x+3
=>3x>=7
=>x>=7/3
b: (x+3)^2<(x-2)^2
=>6x+9<4x-4
=>2x<-13
=>x<-13/2
c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)
=>2/3x-1-x<=2/5x-3/5
=>-11/15x<2/5
=>x>-6/11
a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)⇔\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)
P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)
P=\(\dfrac{5x-10}{(x-2)(x+2)}\)
P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)
P=\(\dfrac{5}{x+2}\)
Vậy P=\(\dfrac{5}{x+2}\)
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
\(26^2+24^2+26.48=26^2+24^2+2.26.24\)
\(=\left(26+24\right)^2=50^2=2500\)