K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)

\(\Rightarrow-n-7+n-2⋮n-2\)

\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)

Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)

b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)

\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)

\(\Rightarrow n-6-n-5⋮n+5\)

\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)

Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)

(Mấy dạng này bạn cứ làm sao để bỏ n là được)

13 tháng 2 2020

Cảm ơn bạn .Mình sẽ

27 tháng 9 2019

a, 410.815=220.245=265

b,415.530=230.530=(2.5)30=1030

c, \(\frac{2^{10^{ }}.13+2^{10^{ }}.65}{2^{8^{ }}.104}\)

=\(\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}\) =\(\frac{2^{10}.78}{2^{10}.26}\) =\(\frac{78}{26}\)=3

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

29 tháng 4 2020

bài 1 :

\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1

\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1

\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2 

chúc bạn học tốt !!!

29 tháng 4 2020

nếu có thì kết bạn rrrrrtt3448Y ok

\(a,\frac{3}{4}.\left(x+2\right)+\frac{1}{2}.\left(x-\frac{1}{2}\right)=\frac{15}{4}\)

\(\frac{3}{4}.x+\frac{3}{4}.2+\frac{1}{2}.x+\frac{1}{2}.\left(-\frac{1}{2}\right)=\frac{15}{4}\)

\(\left(\frac{3}{4}.x+\frac{1}{2}.x\right)+\frac{3}{2}-\frac{1}{4}=\frac{15}{4}\)

\(\left(\frac{3}{4}+\frac{1}{3}\right).x=\frac{15}{4}+\frac{1}{4}-\frac{3}{2}\)

\(\frac{5}{4}.x=\frac{5}{2}\)

\(x=\frac{5}{2}:\frac{5}{4}\)

\(x=2\)

\(b,3.x-\frac{3}{5}=0\)

\(3.x=0+\frac{3}{5}\)

\(3.x=\frac{3}{5}\)

\(x=\frac{3}{5}:3\)

\(x=\frac{1}{5}\)

\(c,\frac{-2}{3}.x-\frac{1}{3}.\left(2.x-3\right)=\frac{3}{2}\)

\(\frac{-2}{3}.x-\frac{2}{3}.x+1=\frac{3}{2}\)

\(\left(\frac{-2}{3}-\frac{2}{3}\right).x=\frac{3}{2}-1\)

\(-\frac{4}{3}.x=\frac{1}{2}\)

\(x=\frac{1}{2}:\left(\frac{-4}{3}\right)\)

\(x=\frac{-3}{8}\)

Học tốt

a,-3/5.2/7+-3/7.3/5+-3/7

=-3/7.2/5+(-3/7).3/5+(-3/7) 

=-3/7(2/5+3/5+1)

=-3/7.2

=-6/7

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)