Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m
a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\); \(x1.x2=m-1\)
\(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)
\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)
2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2
tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)
tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)
Theo ht Viete ta có :
\(\int^{x1+x2=-\frac{b}{a}}_{x1x2=\frac{c}{a}}\)
Xét \(\frac{1}{x1^2}+\frac{1}{x2^2}=\frac{x1^2+x2^2}{x1^2x2^2}=\frac{\left(x1+x2\right)^2-2x1x2}{x1^2\cdot x2^2}=\frac{\left(\frac{-b}{a}\right)^2-\frac{2c}{a}}{\left(\frac{c}{a}\right)^2}\) rút gọn tiếp nha (1)
\(\frac{1}{x1^2}\cdot\frac{1}{x2^2}=\frac{1}{\left(x1x2\right)^2}=\frac{1}{\left(\frac{c}{a}\right)^2}=\frac{a^2}{c^2}\) (2)
Từ (1) và (2) => \(\frac{1}{x1^2};\frac{1}{x2^2}\) là nghiệm pt ....
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
a/ \(m\ne0\) ; \(\Delta'=\left(m+1\right)^2-m\left(m-4\right)\ge0\)
\(\Leftrightarrow6m+1\ge0\Rightarrow m\ge-\frac{1}{6}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m}\\x_1x_2=\frac{m-4}{m}\end{matrix}\right.\)
Kết hợp với điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m+2}{m}\\x_1+4x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x_2=2-\frac{2m+2}{m}\\x_1=2-4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{-2}{3m}\\x_1=\frac{6m+8}{3m}\end{matrix}\right.\)
Mà \(x_1x_2=\frac{m-4}{m}\Rightarrow\frac{-2\left(6m+8\right)}{9m^2}=\frac{m-4}{m}\)
\(\Leftrightarrow-12m-16=9m^2-36m\)
\(\Leftrightarrow9m^2-24m+16=0\Rightarrow m=\frac{4}{3}\)
b/ Từ hệ thức Viet: \(\left\{{}\begin{matrix}2x_1+2x_2=\frac{4m+4}{m}\\x_1x_2=\frac{m-4}{m}\end{matrix}\right.\)
\(\Rightarrow2x_1+2x_2+x_1x_2=5\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Bài 2:
Đặt \(x-\frac{1}{2}=t\)
\(\Rightarrow t^2-2t-\frac{21}{4}=0\Rightarrow\left[{}\begin{matrix}t=\frac{7}{2}\\t=-\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{2}=\frac{7}{2}\\x-\frac{1}{2}=-\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
Theo hệ thức viete :\(\int^{x1+x2=\frac{c}{3}}_{x1x2=\frac{2c-1}{3}}\)
Ta có S = \(\frac{1}{x1^3}+\frac{1}{x2^3}=\frac{x1^3+x2^3}{\left(x1x2\right)^3}=\frac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{\left(x1x2\right)^3}\)
Giờ thay vào và rút gọn
Trần Đức Thắng bạn ghi kết quả cuối cùng cho mk đc ko>? mk làm bài này ra rồi nhưng sai kết quả cuối