Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>2x+6y=2m+2 và 2x-y=7
=>7y=2m-5 và 2x-y=7
=>y=2/7m-5/7 và 2x=y+7
=>y=2/7m-5/7 và 2x=2/7m+30/7
=>x=1/7m+15/7 và y=2/7m-5/7
x0+2y0 bằng gì bạn ơi?
\(\left\{{}\begin{matrix}x^2+y^2=25\\x.y=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{10}{y}\right)^2+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{100}{y^2}+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}100+y^4-25y^2=0\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y^2=20\\y^2=5\end{matrix}\right.\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=\pm\sqrt{20}\\y=\pm\sqrt{5}\end{matrix}\right.\\x=\dfrac{10}{y}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\sqrt{20};x=\sqrt{5}\\y=-\sqrt{20};x=-\sqrt{5}\\y=-\sqrt{5};x=-\sqrt{20}\\y=\sqrt{5};x=\sqrt{20}\end{matrix}\right.\)
đặt x+y = u ; xy = v đk: u2 ≥ 4v
\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)
từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)
nghiệm u = - 4 loại
u = 3 nhận => v = 2
<=> x+y = 3 ; xy = 2
đặt x+y = S ; xy = P đk: S2 ≥ 4P
=> x và y là nghiệm của phương trình
X2 - SX + P = 0
= X2 - 3X + 2 = 0
=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)
vậy (x;y) = {(1;2);(2;1)}
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
\(\left\{{}\begin{matrix}x+y+xy=5\\\left(x+y\right)^2-xy=7\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x+y=a\\x.y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\a^2-b=7\end{matrix}\right.\) \(\Rightarrow a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=-4\Rightarrow b=9\\a=3\Rightarrow b=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=-4\\b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-4\Rightarrow y=-x-4\\xy=9\end{matrix}\right.\) \(\Rightarrow x\left(-x-4\right)-9=0\)
\(\Rightarrow x^2+4x+9=0\) \(\Rightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=3\Rightarrow y=3-x\\x.y=2\end{matrix}\right.\) \(\Rightarrow x\left(3-x\right)-2=0\Rightarrow-x^2+3x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=2\Rightarrow y=1\end{matrix}\right.\)
Vậy pt có 2 cặp nghiệm \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+6x-3y-18=xy\\xy-2x+2y-4=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-3y=18\\-2x+2y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=6\\-x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
a) x + y = 6 (1)
2x - 3y = 12 (2)
(1) ⇔ x = 6 - y (3)
Thế (3) vào (2) ta có:
2(6 - y) - 3y = 12
⇔ 12 - 2y - 3y = 12
⇔ -5y = 12 - 12
⇔ -5y = 0
⇔ y = 0
Thế y = 0 vào (3) ta có:
x = 6 - 0
⇔ x = 6
Vậy S = {6; 0}
b) x - y = 5 (4)
(x - 2)(y + 3) = 3 + xy (5)
(5) ⇔ xy + 3x - 2y - 6 = 3 + xy
⇔ 3x - 2y = 3 + 6
⇔ 3x - 2y = 9 (6)
(4) ⇔ x = y + 5 (7)
Thế x = y + 5 vào (6) ta có:
(6) ⇔ 3(y + 5) - 2y = 9
⇔ 3y + 15 - 2y = 9
⇔ y = 9 - 15
⇔ y = -6
Thế y = -6 vào (7) ta có:
x = -6 + 5
⇔ x = -1
Vậy S ={-1; -6}
Trừ 2 vế của HPT
\(\Leftrightarrow x^2-xy+y^2-x+y-xy=0\\ \Leftrightarrow x^2+y^2-x+y-2xy=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)
Với \(x=y\Leftrightarrow x-x+x^2=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\Rightarrow y=\sqrt{7}\\x=-\sqrt{7}\Rightarrow y=-\sqrt{7}\end{matrix}\right.\)
Với \(x=y+1\Leftrightarrow y+1-y+y\left(y+1\right)=7\)
\(\Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)
Vậy ...
x^2 - xy + y^2 = x - y + xy
<=> x^2 - 2xy + y^2 - (x - y) = 0
<=> (x - y)^2 - (x - y) = 0
<=> (x - y)(x - y - 1) = 0
TH1: x - y = 0 <=> x = y
x^2 - xy + y^2 = 7
<=> x^2 = 7 <=> x = sqrt(7) hoặc x = -sqrt(7)
Với x = sqrt(7) thì y = sqrt(7)
Với x = -sqrt(7) thì y = -sqrt(7)
TH2: x - y - 1 = 0 <=> x = y + 1
x - y + xy = 7
<=> (y + 1)y + 1 = 7
<=> y^2 + y - 6 = 0
<=> (y - 2)(y + 3) = 0
<=> y = 2 hoặc y = -3
Với y = 2 thì x = 2 + 1 = 3
Với y = -3 thì x = -3 + 1 = -2