K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

1.Thuật toán tìm kiếm tuần tự:

- Độ phức tạp thời gian của thuật toán tìm kiếm tuần tự là O(n)

- Giá trị lớn nhất của n với thời gian thực thi là 1 giây: n = 1 giây * (106 us / phép tính) = 106

- Giá trị lớn nhất của n với thời gian thực thi là 1 phút: n = 1 phút * (60 giây / phút) * (106us / phép tính) = 6 * 107

- Giá trị lớn nhất của n với thời gian thực thi là 1 giờ: n = 1 giờ * (60 phút / giờ) * (60 giây / phút) * (106us / phép tính) = 3.6 * 109

2.Thuật toán sắp xếp chèn:

- Độ phức tạp thời gian của thuật toán sắp xếp chèn là O(102

- Giá trị lớn nhất của n với thời gian thực thi là 1 giây: n = sqrt(1 giây * (106us / phép tính)) =103

- Giá trị lớn nhất của n với thời gian thực thi là 1 phút: n = sqrt(1 phút * (60 giây / phút) * (106us / phép tính)) = 6 * 104

- Giá trị lớn nhất của n với thời gian thực thi là 1 giờ: n = sqrt(1 giờ * (60 phút / giờ) * (60 giây / phút) * (106us / phép tính)) = 3.6 * 106

3. Thuật toán sắp xếp chọn:

- Độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2)

- Giá trị lớn nhất của n là: n = sqrt(1 giây * (106us / phép tính)) = 1000.

Thời gian thực thi là 1 phút:

Giá trị lớn nhất của n là: n = sqrt(1 phút * (60 giây / phút) * (106us / phép tính)) = 60000.

Thời gian thực thi là 1 giờ:

Giá trị lớn nhất của n là: n = sqrt(1 giờ * (60 phút / giờ) * (60 giây / phút) * (106us / phép tính)) = 3.6 * 106

 

QT
Quoc Tran Anh Le
Giáo viên
9 tháng 11 2023

1. Tính số lần lặp của vòng lặp bên trong của thuật toán sắp xếp chèn tuyến tính.

2. Tính số lần lặp của vòng lặp ngoài của thuật toán sắp xếp chèn tuyến tính.

3. Ước lượng độ phức tạp thời gian của thuật toán sắp xếp chèn tuyến tính:

Vòng lặp for bên ngoài kiểm soát việc thực hiện đúng n-1 bước.

Vòng lặp while lồng bên trong thực hiện đồng thời cùng lúc hai việc a) và b) theo cách dịch chuyển dần từng bước sang trái, từ vị trí i tới vị trí k+1

22 tháng 10 2023

a)

import time

def linear_search(arr, x):

 """

 Tìm kiếm tuyến tính trong dãy arr để tìm giá trị x.

 Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.

 """

 n = len(arr)

 for i in range(n):

  if arr[i] == x:

   return i

 return -1

# Dãy số A

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 11]

# Phần tử cần tìm kiếm

C = 9

# Bắt đầu đo thời gian

start_time = time.perf_counter()

# Tìm kiếm phần tử C trong dãy A

result = linear_search(A, C)

# Kết thúc đo thời gian

end_time = time.perf_counter()

if result != -1:

 print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")

else:

 print(f"Phần tử {C} không có trong dãy A.")

print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")

b)

import time

def binary_search(arr, x):

 """

 Tìm kiếm nhị phân trong dãy arr để tìm giá trị x.

 Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.

 """

 left, right = 0, len(arr) - 1

 while left <= right:

  mid = (left + right) // 2

  if arr[mid] == x:

   return mid

  elif arr[mid] < x:

   left = mid + 1

  else:

   right = mid - 1

 return -1

# Dãy số A đã được sắp xếp

A = [0, 1, 3, 5, 7, 9, 10, 11, 13, 16]

# Phần tử cần tìm kiếm

C = 9

# Bắt đầu đo thời gian

start_time = time.perf_counter()

# Tìm kiếm phần tử C trong dãy A bằng thuật toán tìm kiếm nhị phân

result = binary_search(A, C)

# Kết thúc đo thời gian

end_time = time.perf_counter()

if result != -1:

 print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")

else:

 print(f"Phần tử {C} không có trong dãy A.")

print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")

-Thời gian thực hiện ở câu a là 8.99999,thời gian thực hiện ở câu b là 6,49999 giây.

23 tháng 8 2023

- Các thuật toán và chương trình mà em đã biết đều là các thuật toán cơ bản trong lập trình và giải quyết các vấn đề thông thường. Các điểm chung của chúng bao gồm: Tính đơn giản, độ phức tạp thấp.

- Theo em, để thiết kế một thuật toán đúng giải một bái toàn cho trước cần trải qua các bước:

1. Xác định bài toán

2. Tìm cấu trúc dữ liệu biểu diễn thuật toán.

3. Tìm Thuật Toán.

4. Lập Trình (Programming)

5. Kiểm thử chương trình (Testing program)

6. Tối ưu chương trình (optimization program)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

*Thuật toán sắp xếp chèn (Insertion Sort):

import time

def insertion_sort(arr):

 n = len(arr)

 for i in range(1, n):

  key = arr[i]

  j = i - 1

  while j >= 0 and arr[j] > key:

   arr[j + 1] = arr[j]

   j -= 1

  arr[j + 1] = key

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp chèn

insertion_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là 0 giây

*Thuật toán sắp xếp chọn:

import time

def selection_sort(arr):

 n = len(arr)

 for i in range(n):

  min_idx = i

  for j in range(i + 1, n):

   if arr[j] < arr[min_idx]:

    min_idx = j

  arr[i], arr[min_idx] = arr[min_idx], arr[i]

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp chọn

selection_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là: 0 giây

*Thuật toán sắp xếp nổi bọt:

import time

def bubble_sort(arr):

 n = len(arr)

 for i in range(n - 1):

  for j in range(n - i - 1):

   if arr[j] > arr[j + 1]:

    arr[j], arr[j + 1] = arr[j + 1], arr[j]

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp nổi bọt

bubble_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là: 0 giây

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Thuật toán tìm kiếm nhị phân thực hiện tìm kiếm một mảng đã sắp xếp bằng cách liên tục chia các khoảng tìm kiếm thành 1 nửa. Bắt đầu với một khoảng từ phần tử đầu mảng, tới cuối mảng. Nếu giá trị của phần tử cần tìm nhỏ hơn giá trị của phần từ nằm ở giữa khoảng thì thu hẹp phạm vi tìm kiếm từ đầu mảng tới giửa mảng và nguợc lại. Cứ thế tiếp tục chia phạm vi thành các nửa cho dến khi tìm thấy hoặc đã duyệt hết.

Thuật toán tìm kiếm nhị phân tỏ ra tối ưu hơn so với tìm kiếm tuyết tính ở các mảng có độ dài lớn và đã được sắp xếp. Ngược lại, tìm kiếm tuyến tính sẽ tỏ ra hiệu quả hơn khi triển khai trên các mảng nhỏ và chưa được sắp xếp.

19 tháng 8 2023

Tham khảo:

Viết chương trình Python thực hiện thuật toán sắp xếp chèn tuyến tính dựa trên mã giả đã cho trong báo học:

void Insertion_Sort(int a[], int n){

int pos, i;

int x;//lưu giá trị a[i] tránh bị ghi đè khi dời chỗ các phần tử

for(i=1; i<n; i++){//đoạn a[0] đã sắp xếp

x = a[i]; pos = i-1;

//tìm vị trí chèn x

while((pos>=0)&&(a[pos]>x)){

                //kết hợp dời chỗ các phần tử sẽ đứng sau x trong danh sách mới

a[pos+1] = a[pos];

pos--;

}

a[pos+1] = x;//chèn x vào danh sách

}

}

void main()

{

int a[5] = {8, 4, 1, 6, 5};

Insertion_Sort(a, 5);

cout<<"Mang sau khi sap xep:"<<endl;

for(int i=0;i<5;i++){

cout<<a[i]<<" ";

}

system("pause");

QT
Quoc Tran Anh Le
Giáo viên
9 tháng 11 2023

Sau lần chia đôi đầu tiên, pham vi tìm kiếm còn lại n/2 số, sau khi chia đôi lần thứ hai, dãy còn lại n/4 số, sau khi chia đôi lần thứ dãy còn lại n/8, …sau khi chia đôi lần k dãy còn lại n/2.­­­­­­­mũ k. Kết thúc khi 2 mũ k sấp xỉ n.

18 tháng 7 2023

THAM KHẢO!

1.Thuật toán sắp xếp chèn (Insertion Sort):

def insertion_sort(arr):

  for i in range(1, len(arr)):

   key = arr[i]

   j = i - 1

   while j >= 0 and arr[j] > key:

    arr[j + 1] = arr[j]

    j -= 1

   arr[j + 1] = key

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = insertion_sort(A)

print("Dãy A sau khi sắp xếp chèn:", sorted_A)

2. Thuật toán sắp xếp chọn (Selection Sort):

def selection_sort(arr):

  for i in range(len(arr)):

   min_idx = i

   for j in range(i + 1, len(arr)):

    if arr[j] < arr[min_idx]:

     min_idx = j

   arr[i], arr[min_idx] = arr[min_idx], arr[i]

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = selection_sort(A)

print("Dãy A sau khi sắp xếp chọn:", sorted_A)

3.Thuật toán sắp xếp nổi bọt (Bubble Sort):

def bubble_sort(arr):

  n = len(arr)

  for i in range(n - 1):

   for j in range(n - 1 - i):

    if arr[j] > arr[j + 1]:

     arr[j], arr[j + 1] = arr[j + 1], arr[j]

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = bubble_sort(A)

print("Dãy A sau khi sắp xếp nổi bọt:", sorted_A)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Tính đúng của thuật toán cần được chứng minh bằng lập luận toán học. Sử dụng các bộ dữ liệu kiểm thử có thể làm tăng độ tin cậy của chương trình nhưng chưa chứng minh được tính đúng của thuật toán.