K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2022

- Với \(p=2\Rightarrow p^2+2=2^2+2=6\) không là số nguyên tố (ktm).

- Với \(p=3\Rightarrow p^2+2=3^2+2=11\) là số nguyên tố (tm)

\(\Rightarrow p^3+2=3^3+2=29\) là số nguyên tố (đúng).

- Với \(p>3\) \(\Rightarrow p\) chia \(3\) dư \(1\) hoặc \(2\)

\(\Rightarrow p^2\) chia \(3\) dư \(1\) (do số chính phương chia \(3\) dư \(0\) hoặc \(1\)).

\(\Rightarrow p^3+2\) chia hết cho \(3\) nên không là số nguyên tố (ktm).

- Từ 3 điều trên, ta suy ra đpcm.

22 tháng 7 2022

hhhh

DD
17 tháng 10 2021

Nếu \(p\ne3\)thì \(p=3k\pm1\).

Khi đó \(p^2+2=\left(3k\pm1\right)^2+3=9k^2\pm6k+3⋮3\)mà dễ thấy \(p^2+2>3\)

do đó \(p^2+2\)không là số nguyên tố. 

Suy ra \(p=3\). Khi đó \(p^3+2=29\)là số nguyên tố. (đpcm) 

12 tháng 3 2016

2. Ta có:

+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2

+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3

+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)

=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1

=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.

Vậy p = 3.

12 tháng 3 2016

UCLN là gì

14 tháng 7 2018

Theo đề ra ta có

p + n + e = 34

mà p = e => 2p + n = 34  (1)

lại có : p+e - n  =10 

             2p - n =10  => 2p = 10+n (2)

thay (2) vào (1) ta có ;

10 +n + n = 34

2n = 34-10 = 24

n = 24 : 2 = 12

=> 2p = 34 - 12 = 22

  p = 22 : 2 = 11

=> e = 11

Vậy  p =e =11 . n = 12

=> nguyên tố cần tìm là Natri (Na )

2 tháng 10 2023

Đg ròi đó

 

8 tháng 2 2020

nếu n=3 thì đúng

nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi

8 tháng 2 2020

Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)

Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)

Điều này trái với giả thiết.

Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )

3 tháng 12 2018

Để N nguyên thì \(3x^2-4x-17⋮x+2\)

\(3x^2+6x-10x-20+3⋮x+2\)

\(3x\left(x+2\right)-10\left(x+2\right)+3⋮x+2\)

\(\left(x+2\right)\left(3x-10\right)+3⋮x+2\)

Dễ thấy \(\left(x+2\right)\left(3x-10\right)⋮x+2\)

\(\Rightarrow3⋮x+2\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow x\in\left\{-1;1;-5;-3\right\}\)

Vậy......

3 tháng 12 2018

\(A=\frac{x^2-4x+5}{x-3}=\frac{x^2-3x-x+3+2}{x-3}=\frac{x\left(x-3\right)-\left(x-3\right)+2}{x-3}=x-1+\frac{2}{x-3}\)

Để \(A\in Z\Leftrightarrow x-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>x thuộc {4;2;5;1}

7 tháng 9 2020

\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)

Vì \(8.251.n^2⋮8\) nên  \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)

Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)

Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên

\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)

(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8)                     ---->đpcm