Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb
b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3) ; x\(_1\)x\(_2\)=m\(^2\)+6m (I)
Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13 (*)
Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6
Link : https://123doc.org/document/3369350-ung-dung-cua-dinh-ly-viet.htm
Trang 2 nhé :33
a, \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)
\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-8m^2-4m+4\)
\(=m^2+2m+1+4\)
\(=\left(m+1\right)^2+4\) \(\ge4\)với \(\forall m\)
\(\Rightarrow\)Phương trình luôn có \(2n_0\)phân biệt với mọi m
b,
Theo vi-ét :
\(\hept{\begin{cases}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{cases}}\)
\(B=x_1^2+x_2^2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-10m^2-5m+5\)
\(=-m^2+m+6\)
\(=-\left(m^2-m-6\right)\)
\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{1}{4}-6\right]\)
\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\right]\)
\(=-\left(m-\frac{1}{2}\right)^2+\frac{25}{4}\)
Vậy GTLN \(B=\frac{25}{4}\)khi \(-\left(m-\frac{1}{2}\right)^2=0\) \(\Leftrightarrow m=\frac{1}{2}\)
a) \(u_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n^2+2n+1}{\left[n\left(n+1\right)\right]^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)
\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}\in Q\)
b) \(u_n=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Vậy \(S_{2021}=u_1+u_2+...+u_{2021}=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2021}-\frac{1}{2022}\)
\(=2022-\frac{1}{2022}=\frac{2022^2-1}{2022}\)