Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.
Em đăng đúng môn nhé.
Ta chứng minh \(\left(n,n+1\right)=1\) với mọi số tự nhiên n. Thật vậy, đặt \(\left(n,n+1\right)=d\left(d\inℕ^∗\right)\), khi đó \(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left(n+1\right)-n⋮d\) \(\Rightarrow1⋮d\Rightarrow d=1\). Vậy \(\left(n,n+1\right)=1\).
Xét số tự nhiên \(k\) bất kì sao cho \(1\le k\le35\). Theo đề bài kết hợp với \(\left(n,n+1\right)=1\), dễ thấy \(\left(n,n+k\right)\ge k\). Đặt \(\left(n,n+k\right)=d'\left(d'\ge k\right)\), khi đó \(\left\{{}\begin{matrix}n⋮d'\\n+k⋮d'\end{matrix}\right.\Rightarrow\left(n+k\right)-n⋮d'\) \(\Rightarrow k⋮d'\). Nhưng do \(d'\ge k\) nên \(d'=k\). Vì \(n⋮d'\) ,suy ra \(n⋮k\) (đpcm)