Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Ta có: \(k\sqrt{x_k-k^2}\le\dfrac{1}{2}\left(k^2+x_k-k^2\right)=\dfrac{1}{2}x_k\)
\(\Rightarrow\sum\limits^{2005}_{k=1}k.\sqrt{x_k-k^2}\le\dfrac{1}{2}\left(x_1+x_2+...+x_{2005}\right)\)
Dấu "=" xảy ra khi:
\(k=\sqrt{x_k-k^2}\Leftrightarrow x_k=2k^2\) hay \(\left\{{}\begin{matrix}x_1=2.1^2=1\\x_2=2.2^2=8\\....\\x_{2005}=2.2005^2\end{matrix}\right.\)
x1+x2+x3+...+x2008=2008
\(\Leftrightarrow\)(x1-1)+(x2-1)+(x3-1)+...+(x2008-1)=0 (1)
x31+x32+x33+...+x32008=x41+x42+x43+...+x42008
Lấy vế phải trừ vế trái ta được :
x31(x1-1)+x32(x2-1)+x33(x3-1)+...+x32008(x2008-1)=0 (2)
Lấy (1) (2) rồi đặt nhân tử chung là ra cái này
(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Ta thấy (x31-1)(x1-1) = (x1-1)(x21+x1+1)(x1-1) = (x1-1)2(x21+x1+1)\(\ge\)0 Với mọi x
CMTT : (x23-1)(x2-1) \(\ge\)0 Với mọi x
.............................................
(x20083-1)(x2008-1) \(\ge\)0 Với mọi x
\(\Rightarrow\)(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)\(\ge\)0
Mà(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Đến đây bạn tự suy ra x1=1; x2=1;...;x2008=1 nhé!
Mình hơi bận nên không giải tiếp được bán nhé!
Mong bạn thông cảm
Ta có \(\Delta^'=\left(m-1\right)^2-\left(m^2+1\right)=m^2-2m+1-m^2-1=-2m.\)
Để phương trình đã cho có 2 nghiệm \(x_1,x_2\)thì \(\Delta^'\ge0\Leftrightarrow-2m\ge0\Leftrightarrow m\le0\)
áp dụng hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+1\end{cases}}\)
Dễ thấy \(x_1x_2=m^2+1\ge1\Rightarrow x_1,x_2\ne0\forall m\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)\(\Leftrightarrow\frac{x^2_1+x_2^2}{x_1x_2}=4\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2=4\Leftrightarrow\left(x_1+x_2\right)^2=6x_1x_2\)
\(\Leftrightarrow\left(2\left(m-1\right)\right)^2=6\left(m^2+1\right)\Leftrightarrow4m^2-8m+4=6m^2+6\)
\(\Leftrightarrow2m^2+8m+2=0\Leftrightarrow m^2+4m+4=3\Leftrightarrow\left(m+2\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}m+2=\sqrt{3}\\m+2=-\sqrt{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=\sqrt{3}-2\left(TMĐK\right)\\m=-\sqrt{3}-2\left(TMĐK\right)\end{cases}.}\)
Vậy..........
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
Ta chứng minh bài toán \(a_1\le a_2\le...\le a_n\) thỏa mãn \(a_1+a_2+...+a_n=0;\left|a_1\right|+\left|a_2\right|+...+\left|a_n\right|=1\) thì \(a_n-a_1=\frac{2}{n}\)
Từ điều kiện trên ta có \(k\in N\) sao cho \(a_1\le a_2\le...a_k\le0\le a_{k+1}\le...\le a_n\)
\(\Rightarrow\hept{\begin{cases}\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=0\\-\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a_1+a_2+...+a_k=-\frac{1}{2}\\a_{k+1}+...+a_n=\frac{1}{2}\end{cases}}\). Mà
\(a_1\le a_2\le...\le a_k\Rightarrow a_1\le-\frac{1}{2k};a_{k+1}\le...\le a_n\Rightarrow a_n\ge\frac{1}{2k}\)
\(\Rightarrow a_n-a_1\ge\frac{1}{2k}+\frac{1}{2\left(n-k\right)}=\frac{n}{2k\left(n-k\right)}\ge\frac{n}{2\left(\frac{k+n-k}{2}\right)^2}=\frac{2}{n}\)
Áp dụng vào bài chính theo giải thiết ta có:
\(\hept{\begin{cases}\frac{x_1}{2013}+\frac{x_2}{2013}+...+\frac{x_{192}}{2013}=0\\\left|\frac{x_1}{2013}\right|+\left|\frac{x_2}{2013}\right|+...+\left|\frac{x_{192}}{2013}\right|=0\end{cases}}\)
\(\Rightarrow\frac{x_{192}}{2013}-\frac{x_1}{2013}\ge\frac{2}{192}\Rightarrow x_{192}-x_1\ge\frac{2013}{96}\)