Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba ⋮ 9
ab - ba=a * 10+b*1-b*10-a*1
=a*(10-1)-b*(10-1)=a*9-b*9=9*(a-b)⋮9(vì 9⋮9)
vậy ab-ba⋮9
abba ⋮ 11
abba=a*1000+b*100+b*10+a.1=a*(1000+1)+b*(100+10)
=a*1001+b*110=a*11*91+b*10*11=11(a*91+b*10)⋮11(vì 11⋮11)
Vậy abba⋮11
ab - ba ⋮ 9
ab - ba=a x 10+b x 1-b x 10-a x 1
=a x (10-1)-b x (10-1)=a x 9-b x 9=9x (a-b)⋮9(vì 9⋮9)vậy ab-ba⋮9abba ⋮11
abba=a x 1000+b x 100+b x 10+a.1= a x (1000+1)+b x (100+10)
=a x 1001+b x 110=a x 11 x 91+b x 10 x 11=11(a x 91+b x 10)⋮11(vì 11⋮11)Vậy abba⋮11
S=22+23+24+...+22003+22004
2S=23+24+25+...+22004+22005
2S—S=(23+24+25+...+22004+22005)—(22+23+24+...+22003+22004)
S=22005—22
Còn lại tự làm
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
a, Ta có : \(\overline{aaa}=a.111=a.3.37\Rightarrow\overline{aaa}⋮37\)
b,Vì : \(\overline{aaaaaa}=a.111111=a.15873.7\Rightarrow\overline{aaaaaa}⋮7\)
c,Vì : \(\overline{abcabc}=\overline{abc}.1001\Rightarrow\overline{abcabc}⋮1001\)
d, Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=10a+a+10b+b=11a+11b\)
\(=11\left(a+b\right)⋮11\) ( Vì : \(a+b\in N\) )
Vậy \(\overline{ab}+\overline{ba}⋮11\)
e, \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=\left(10-1\right)a-\left(10-1\right)b\)
\(=9a-9b=9\left(a-b\right)\)
Vì : \(a\ge b\Rightarrow a-b\in N\Rightarrow9\left(a-b\right)⋮9\)
Vậy : \(\overline{ab}-\overline{ba}⋮9\)
f, \(\overline{abc}-\overline{cba}=\left(a.100+b10+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a+10a+10c+c\right)-\left(100c+10c+10a+a\right)\)
\(=\left(110a+11c\right)-\left(110c+11a\right)⋮11\)
Vì : \(a\ge c\Rightarrow\overline{abc}-\overline{cba}⋮11\)
Vậy : \(\overline{abc}-\overline{cba}⋮11\)
a) \(\overline{aaa}=a.111⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(đpcm\right)\)
b) \(\overline{aaaaaa}=a.111111⋮7\) ( vì \(111111⋮7\) )
\(\Rightarrow\overline{aaaaaa}⋮7\left(đpcm\right)\)
c) \(\overline{abcabc}=\overline{abc}.1001⋮1001\)
\(\Rightarrow\overline{abcabc}⋮1001\left(đpcm\right)\)
d) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\left(đpcm\right)\)
e) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
\(\Rightarrow\overline{ab}-\overline{ba}⋮9\left(đpcm\right)\)
f) \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=11\left(9a-9b\right)⋮11\)
\(\Rightarrow\overline{abc}-\overline{cba}⋮11\left(đpcm\right)\)
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11 ( a + b ) chia hết cho 11 ( đpcm )
b) ab - ba
= 10a + b - 10b - a
= 9a - 9b
= 9 ( a - b ) chia hết cho 9 ( đpcm )
c) abab
= 1000a + 100b + 10a + b
= 1010a + 101b
= 101 ( 10a + b ) chia hết cho 101
P.s : đề câu b đúng k ?
a) ab + ba
Bạn tham khảo câu hỏi tương tự tại link này nhé https://olm.vn/hoi-dap/question/1198138.html
Chúc bạn học tốt ~