\(a+b+c=1\)

Chứng minh rằng

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

\(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)

Thay thế \(a+b+c=1\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a+b+c}{b+c}+\dfrac{a+2b+c}{a+c}+\dfrac{a+b+2c}{a+b}\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)

\(\Leftrightarrow\dfrac{2b}{a}+\dfrac{2c}{b}+\dfrac{2a}{c}\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)

\(\Leftrightarrow\left(\dfrac{2b}{a}-\dfrac{2b}{a+c}\right)+\left(\dfrac{2c}{b}-\dfrac{2c}{a+b}\right)+\left(\dfrac{2a}{c}-\dfrac{2a}{b+c}\right)\ge3\)

\(\Leftrightarrow\dfrac{2bc}{a\left(a+c\right)}+\dfrac{2ca}{b\left(a+b\right)}+\dfrac{2ab}{c\left(b+c\right)}\ge3\)

\(\Leftrightarrow\dfrac{bc}{a\left(a+c\right)}+\dfrac{ca}{b\left(a+b\right)}+\dfrac{ab}{c\left(b+c\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{2abc}\)

Chứng minh rằng \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^4b^2c^2}=2a^2bc\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\) ( đpcm )

\(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)

Vậy \(\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)( đpcm )

22 tháng 3 2021

\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )

\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )

Vậy ta có đpcm

Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1

13 tháng 7 2021

Do giả thiết  abc=1abc=1 nên

            \dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc

Đặt       x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc 

      \dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz23.

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

Tương tự:

\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)

Cộng theo vế:

\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)

Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)

\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Đặt vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)

Hoàn toàn TT:

\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)

\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)

Cộng theo vế:

\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)

\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)