Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1) ta có x2-2(m+2)x +2m2+7=0
ĐK để pt trên có nghiệm: Δ' ≥ 0
⇔ (m + 2)2 -2m2 -7 ≥ 0 ⇔ \(1\le m\le3\)
pt trên có 1 nghiệm x = 5 nên thế x = 5 vào pt ta có:
m2 -5m +6 =0 ⇔ \(\left[{}\begin{matrix}m=2\left(n\right)\\m=3\left(n\right)\end{matrix}\right.\)
với m = 2 thế vào pt ta có: x2 -8x +15 =0 ⇔ \(\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
với m = 3 thế vào pt ta có: x2 -10x + 25 =0 ⇔ pt nghiệm kép x = 5
câu 2) đề hơi sai tí nhé bạn, mình làm theo yêu cầu luôn!
x2 -2(m+1)x+m-a=0
ĐK để pt có nghiệm: Δ' ≥ 0
⇔ (m+1)2 - m +a ≥ 0 ⇔ m2 + m +1+ a ≥ 0
Gọi x1; x2 lần lượt là 2 nghiệm của pt trên, theo hệ thức Vi-et ta có
x1 + x2 = 2m+2 và x1x2 = m - a
A = x1 + x2 -2x1x2 = 2m+2 - 2.(m - a) = 2+2a
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)
\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)
\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)
\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: =>(x+2)^2-3|x+2|=0
=>|x+2|(|x+2|-3)=0
=>x+2=0 hoặc x+2=3 hoặc x+2=-3
=>x=-2; x=1; x=-5
![](https://rs.olm.vn/images/avt/0.png?1311)
giải như pt bậc hai thoy bạn chủ yếu phần xđ hệ số a,b,c rồi giải nếu có nghiệm thì cho đenta≥0
\(2\left(x^2+x-1\right)^2-5\left(x^2+x-1\right)\left(x^2-x+1\right)+2\left(x^2-x+1\right)^2=0\)
Đặt \(x^2+x-1=a;x^2-x+1=b\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-1=2x^2-2x+2\\x^2-x+1=2x^2+2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-3=0\\-x^2-3x+3=0\end{matrix}\right.\Leftrightarrow x^2-3x-3=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-3\right)=9+4\cdot3=21\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{21}}{2}\\x_2=\dfrac{3+\sqrt{21}}{2}\end{matrix}\right.\)