K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{1-cos2x}{2}-\left(1+\sqrt{3}\right)\cdot\dfrac{1}{2}sin2x+\sqrt{3}\cdot\dfrac{1+cos2x}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x-\left(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot sin2x+\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow cos2x\left(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot sin2x=\dfrac{-\sqrt{3}-1}{2}\)

\(\Leftrightarrow sin2x\cdot\dfrac{-\sqrt{3}-1}{2}+cos2x\cdot\dfrac{\sqrt{3}-1}{2}=\dfrac{-\sqrt{3}-1}{2}\)

\(\Leftrightarrow sin2x\left(-\sqrt{3}-1\right)+cos2x\left(\sqrt{3}-1\right)=-\sqrt{3}-1\)

\(\Leftrightarrow sin2x\cdot\dfrac{-\sqrt{3}-1}{8}+cos2x\cdot\dfrac{\sqrt{3}-1}{8}=\dfrac{-\sqrt{3}-1}{8}\)

\(\Leftrightarrow sin\left(2x+a\right)=cosa=sin\left(\dfrac{pi}{2}-a\right)\)(với \(cosa=\dfrac{-\sqrt{3}-1}{8}\))

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=\dfrac{pi}{2}-a+k2pi\\2x+a=pi-\dfrac{pi}{2}+a+k2pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-2a+\dfrac{pi}{2}+k2pi\\2x=\dfrac{pi}{2}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-a+\dfrac{pi}{4}+kpi\\x=\dfrac{pi}{4}+kpi\end{matrix}\right.\)

a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow x=30^o\)

b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=30^o\)

c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)

d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)

 

Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(

e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)

f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)

18 tháng 6 2016

cái này trên OLM mà

18 tháng 6 2016

cái này chắc cũng lớp 10 chứ ko thoát đâu

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

1 tháng 10 2018

\(A=\sqrt{sin^2x-sin^2x.\frac{cos\text{ }x}{sin\text{ }x}+cos^2x-cos^2x.\frac{sin\text{ }x}{cos\text{ }x}}\)

\(A=\sqrt{\left(sin^2x+cos^2x\right)-\left(sin\text{ }x.cos\text{ }x-cos\text{ }x.sin\text{ }x\right)}\)

\(A=\sqrt{1}=1\)

1 tháng 10 2018

\(A=\sqrt{\sin^2x\left(1-\cot x\right)+\cos^2x\left(1-\tan x\right)}\)

\(A=\sqrt{\sin^2x-\sin^2x\cot x+\cos^2x-\cos^2x\tan x}\)

\(A=\sqrt{1-\sin^2x\frac{\cos x}{\sin x}-\cos^2x\frac{\sin}{\cos}}\)

\(A=\sqrt{1-\sin x\cos x-\sin x\cos x}\)

\(A=\sqrt{\sin^2x-2\sin x\cos x+\cos^2x}\)

\(A=\sqrt{\left(\sin x-\cos x\right)^2}=\left|\sin x-\cos x\right|\)

18 tháng 9 2018

Một số hệ thức về cạnh và đường cao trong tam giác vuông

24 tháng 9 2018

thank

9 tháng 1 2017

Câu 2 đề sai, phải là tìm \(max\) bạn nhé.

Đặt \(a=\sin x,b=\cos x\) thì \(P\left(x\right)=3a+\sqrt{3}b\) với \(a^2+b^2=1\)

(Tư tưởng Cauchy-Schwarz quá rõ)

Ta có \(\left(a^2+b^2\right)\left(9+3\right)\ge\left(3a+\sqrt{3}b\right)^2=P^2\left(x\right)\)

Suy ra \(P\left(x\right)\le2\sqrt{3}\). Đẳng thức xảy ra tại \(x=60\) độ.

Câu 1 để mình suy nghĩ sau.

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html