\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x+2}}+\dfrac{1}{\sqrt{y-1}}=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2021

Điều kiện: \(\left\{ \begin{array}{l} x > - 2\\ y > 1\\ x + y > 0 \end{array} \right.\)

Hệ phương trình tương đương: \(\left\{ \begin{array}{l} \sqrt {\dfrac{{x + y}}{{x + 2}}} + \sqrt {\dfrac{{x + y}}{{y - 1}}} = 2\\ {\left( {\dfrac{{x + 2}}{{x + y}}} \right)^2} + \left( {\dfrac{{y - 1}}{{x + y}}} \right)^2 = 2 \end{array} \right.\). Đặt \(\left\{ \begin{array}{l} a = \sqrt {\dfrac{{x + y}}{{x + 2}}} \\ b = \sqrt {\dfrac{{x + y}}{{y - 1}}} \end{array} \right.\) (với \(a,b > 0\))

Ta có hệ phương trình: \(\left\{ \begin{array}{l} a + b = 2\\ \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} = 2 \end{array} \right.\left( * \right)\)

Áp dụng BĐT AM - GM, ta có:

\(\begin{array}{l} 2 = a + b \geqslant 2\sqrt {ab} \Rightarrow ab \leqslant 1\\ 2 = \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} \geqslant 2\sqrt {\dfrac{1}{{{a^4}}}.\dfrac{1}{{{b^4}}}} \Rightarrow ab \geqslant 1 \end{array}\)

Thế nên \(\left( * \right) \Leftrightarrow a = b = 1\)

Ta lại có hệ phương trình: \(\left\{ \begin{array}{l} \dfrac{{x + y}}{{x + 2}} = 1\\ \dfrac{{x + y}}{{y - 1}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 2 \end{array} \right.\)

Vậy hệ phương trình có nghiệm là \((-1;2)\)

20 tháng 2 2021

Đk: \(\left\{{}\begin{matrix}x>-2\\y>1\\x+y>0\end{matrix}\right.\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(a=\sqrt{\dfrac{x+y}{x+2}},b=\sqrt{\dfrac{x+y}{y-1}}\left(a,b>0\right)\)

Ta có hệ: \(\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4+b^4=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2=2a^4b^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(4-2ab\right)^2-2a^2b^2=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4b^4=a^2b^2-8ab+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^2b^2\left(a^2b^2-1\right)+8\left(ab-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(ab-1\right)\left[a^2b^2\left(ab+1\right)+8\right]=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\ab-1\end{matrix}\right.\left(a,b>0\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=1\\\sqrt{\dfrac{x+y}{y-1}}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=x+2\\x+y=y-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

NV
3 tháng 3 2021

c. ĐKXĐ: ...

\(x^2+y^2+2xy-2xy+\dfrac{2xy}{x+y}-1=0\)

\(\Leftrightarrow\left(x+y\right)^2-1-2xy\left(1-\dfrac{1}{x+y}\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1\right)-\dfrac{2xy\left(x+y-1\right)}{x+y}=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1-\dfrac{2xy}{x+y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x^2+y^2+x+y=0\left(vô-nghiệm\right)\end{matrix}\right.\)

Thế \(y=1-x\) xuống pt dưới:

\(\sqrt{x+1-x}=x^2-\left(1-x\right)\)

\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{matrix}\right.\)

NV
3 tháng 3 2021

d.

ĐKXĐ: \(x>-2;y>1;x+y>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=a>0\\\sqrt{\dfrac{x+y}{y-1}}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

Ta có: \(\dfrac{1}{a^4}+\dfrac{1}{b^4}\ge\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^4\ge\dfrac{1}{8}\left(\dfrac{4}{a+b}\right)^4=\dfrac{1}{8}.\left(\dfrac{4}{2}\right)^4=2\)

Dấu "=" xảy ra khi  và chỉ khi \(a=b=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y}{x+2}=1\\\dfrac{x+y}{y-1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm

9 tháng 8 2018

1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)

\(\Rightarrow\) phương trình vô nghiệm

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)