Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)Gọi \(k\) là số lần nhân đôi của gen và \(x\) là số \(nu\) của \(gen\)
Theo bài ra ta có : \(27000=x\left(2^k-1\right)\) mà \(1500\le x\le2000\)
\(\rightarrow x=1500\) hoặc \(x=1800\)
- Nếu \(x=1500\) thì \(k\) không nguyên dương
Nếu \(x=1800\) thì \(k=4(tm)\)
\(\rightarrow N=1800\left(nu\right)\)
\(2,\) Ta có : \(X_{mt}=X.\left(2^4-1\right)\rightarrow G=X=630\left(nu\right)\)
\(\rightarrow A=T=\dfrac{N-2G}{2}=270\left(nu\right)\)
\(3,\) \(\left\{{}\begin{matrix}A_{mt}=T_{mt}=270\left(2^4-1\right)=4050\left(nu\right)\\G_{mt}=X_{mt}=630\left(2^4-1\right)=9450\left(nu\right)\end{matrix}\right.\)
T + G = 50%N
T = 35% N
=> G = 15% N
Số nu của gen : N = 189 : 15 x 100 = 1260 nu
=> A = T = 441 ; G = X = 189
Gọi a là số lần nhân đôi của gen :
Ta có : 2 x (2a - 1) = 30
=> a = 4
=> Amt = Tmt = 441 x (24 - 1) = 6615 nu
Gmt =Xmt = 189 x (24 - 1 ) = 2835
\(\%A+\%G=50\%\rightarrow\%G=30\%\)
\(30\%N=900\rightarrow N=3000\left(nu\right)\)
\(\rightarrow A=20\%N=600\left(nu\right)\)
Gọi \(n\) là số lần \(gen\) nhân đôi.
\(A_{mt}=A.\left(2^n-1\right)\)\(\rightarrow n\simeq0,7\)\((vô\) \(lí)\)
\(\rightarrow\) Sai đề
- \(gen\) dài \(102000\) \(\overset{o}{A}\) em nhỉ ?
\(L=3,4.\dfrac{N}{2}\rightarrow N=60000\left(nu\right)\)
- Theo bài ta có \(\left\{{}\begin{matrix}A=\dfrac{1}{5}G\\A+G=30000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A=T=5000\left(nu\right)\\G=X=25000\left(nu\right)\end{matrix}\right.\)
\(a,\) \(N_{mt}=N.\left(2^4-1\right)=450000\left(nu\right)\)
Ta có \(\left\{{}\begin{matrix}A_{mt}=T_{mt}=5000\left(2^4-1\right)=75000\left(nu\right)\\G_{mt}=X_{mt}=25000\left(2^4-1\right)=375000\left(nu\right)\end{matrix}\right.\)
\(b,\) Gọi số lần nhân đôi của \(gen\) là \(n\) \(\left(n>0,n\in N\right)\)
- Theo bài ta có \(5000\left(2^n-1\right)=77500\rightarrow n=\)\(4,04439...\)\((loại)\)
\(\rightarrow\) Đề sai
\(a,\left\{{}\begin{matrix}\%A+\%G=50\%N\\\%G-\%A=20\%N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\%A=\%T=15\%N\\\%G=\%X=35\%N\end{matrix}\right.\\ A=T=15\%N=15\%.3000=450\left(Nu\right)\\ G=X=35\%N=35\%.3000=1050\left(Nu\right)\\ b,A_{mt}=T_{mt}=A\left(2^5-1\right)=450.31=13950\left(Nu\right)\\ G_{mt}=X_{mt}=G\left(2^5-1\right)=1050.31=32550\left(Nu\right)\)