K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

16 tháng 8 2023

tham khảo:

a) Vì M', N' tương ứng là hình chiếu của M, N trên mặt phẳng (P) nên hình chiếu của a trên mặt phẳng (P) là a’ đường thẳng đi qua hai điểm M', N'.

b) b vuông góc với M'N' và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); M'N' cắt MM' tại M' do đó b vuông góc mặt phẳng tạo bởi M'N', MM' suy ra b có vuông góc với a.

c) b vuông góc với a và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); a cắt MM' tại M do đó b vuông góc mặt phẳng tạo bởi a, MM' suy ra b có vuông góc với M'N'.

gáy sách có vuông góc với mặt bàn

Mặt bìa trùng với mặt bàn

6 tháng 7 2017

Đáp án D.

Kẻ Ax//BC, HI ⊥ Ax; HK ⊥ SI. 

Gọi M là trung điểm của AB

Ta có AI ⊥ (SHI)=> AI ⊥ HK=> HK ⊥ (SAI)=>d(H,(Sax)) = HK

Góc giữa SC và (ABC) là góc  S C H ^   =   60 0

Ta có:

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( P \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

b) Ta có:

\(\left. \begin{array}{l}AH \bot \left( Q \right)\\BK \bot \left( Q \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( Q \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

5 tháng 9 2023

tick cho mình đi 

 

Giả sử có ít nhất 7 ô mà số khăn ăn phủ lên nó là số lẻ. Khi đó, tổng số khăn ăn phủ lên bàn ăn là 7l, với l là số lẻ.

Ta có thể chia bàn ăn thành 8 ô hàng ngang và 8 ô hàng dọc. Do đó, tổng số khăn ăn phủ lên bàn ăn cũng phải chia hết cho 8.

Tuy nhiên, 7l không chia hết cho 8 với mọi giá trị của l. Do đó, giả thuyết của chúng ta là sai.

Vậy, có ít nhất 1 ô mà số khăn ăn phủ lên nó là số chẵn.

Chứng minh bằng phản chứng. Giả sử không có ô nào mà số khăn ăn phủ lên nó là số chẵn. Khi đó, số khăn ăn phủ lên mỗi ô là 1 hoặc 3.

Do đó, tổng số khăn ăn phủ lên bàn ăn là 2n, với n là số ô.

Ta có thể chia bàn ăn thành 8 ô hàng ngang và 8 ô hàng dọc. Do đó, tổng số khăn ăn phủ lên bàn ăn cũng phải chia hết cho 8.

Tuy nhiên, 2n không chia hết cho 8 với mọi giá trị của n. Do đó, giả thuyết của chúng ta là sai.

Vậy, có ít nhất 1 ô mà số khăn ăn phủ lên nó là số chẵn.

Kết luận: Cho dù có đặt khăn ăn như thế nào thì cũng luôn tồn tại ít nhất 1 ô mà số khăn ăn phủ lên nó là một số chẵn.

    share Google it
14 tháng 1 2019

ĐÁP ÁN: A

5 tháng 11 2018

Chọn đáp án A

+ Ta có

nên K là trọng tâm của tam giác BCD

+ Ta dễ dàng chứng minh được SH  ⊥ (BKH) ⇒ SB, (BKH) = SBH