K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

a: Xét ΔADB và ΔADC có

AD chung

DB=DC

AB=AC

Do đó: ΔABD=ΔACD

19 tháng 4 2017

Giải:

Do \(a\in Z^+\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)

\(\Rightarrow5^b>5^c\Leftrightarrow b>c\Leftrightarrow5^b⋮5^c\)

\(\Rightarrow\left(a^3+3a^2+5\right)⋮\left(a+3\right)\)

\(\Rightarrow a^2\left(a+3\right)+5⋮\left(a+3\right)\)

\(a^2\left(a+3\right)⋮\left(a+3\right)\) \([\)do \(\left(a+3\right)⋮\left(a+3\right)\)\(]\)

\(\Leftrightarrow5⋮a+3\Rightarrow a+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\left(1\right)\)

Do \(a\in Z^+\Leftrightarrow a+3\ge4\left(2\right)\)

Kết hợp \(\left(1\right)\)\(\left(2\right)\) ta có:

\(a+3=5\Rightarrow a=5-3=2\)

Thay \(a=2\) vào đẳng thức ta được:

\(2^3+3.2^2+5=5^5\Leftrightarrow25=5^b\Leftrightarrow b=2\)

\(2+3=5^c\Leftrightarrow5=5^c\Leftrightarrow c=1\)

Vậy \(\left(a,b,c\right)=\left(2;2;1\right)\)

11 tháng 3 2017

Em vào đây nhé Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

12 tháng 3 2017

Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

Ấn vào cái chữ màu xanh nhé!

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

<=> \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{7}{18};x_2=-\dfrac{11}{18}\).

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

12 tháng 3 2017

A=a=b=c=0 đó bạn ( mình ko bt cách giảihehe)

13 tháng 3 2017

Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)

\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)

\(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)

\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)

\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)

Mà VP=0

Dấu "=" xảy ra khi

\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\)\(9^8a^{24}b^8c^{40}=0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow A=a+b+c=0+0+0=0\)

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)