Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.-3x^2+15x=0\)
\(\Leftrightarrow3x\left(-x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\-x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b.2x^2-32=0\)
\(\Leftrightarrow2x^2=32\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c.2x^2-5x+1=0\)
\(a=2;b=-5;c=1\)
\(\Delta=\left(-5\right)^2-4.2.1=17>0\)
Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{5-\sqrt{17}}{4}\)
\(a,-3x^2+15x=0\\ -3x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b,\\ 2\left(x^2-16\right)=0\\ \Leftrightarrow x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c,\\ \Delta=5^2-4.2=17\\ \Rightarrow x_1,x_2=\dfrac{\Delta\pm b}{2ac}\\ =\dfrac{5\pm\sqrt{17}}{4}\)
Gọi xy là tiếp tuyến tại A của (O)
=>góc xAC=góc ABC
xy//DE
=>góc xAE=góc AED
=>góc AED=góc ABC
Xét ΔAED và ΔABC có
góc AED=góc ABC
góc EAD chung
=>ΔAED đồng dạng với ΔABC
=>AE/AB=AD/AC
=>AE*AC=AB*AD
Lớp 9 học hđt rồi bạn nhỉ \(VT=a-\sqrt{a}+1=a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=VP\)
Bài này đơn giản, bạn chịu khó suy nghĩ chút là ra thôi! :))
26.
\(\sqrt{\dfrac{-3}{2a^3}}=\sqrt{\dfrac{-3a}{2a^4}}=\dfrac{1}{a^2}\sqrt{\dfrac{-3a}{2}}\)
Đáp án B
28.
\(\sqrt{\dfrac{a^3}{a}}=\sqrt{a^2}=\left|a\right|=-a\)
Đáp án B
a) \(\sqrt{4x-12}+\sqrt{x-3}-\dfrac{1}{3}\sqrt{9x-27}=8\)(*)
Đk: \(x\ge3\)
(*)\(\Rightarrow2\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=8\)
\(\Leftrightarrow\sqrt{x-3}=4\)
\(\Leftrightarrow x=19\)( nhận)
Vậy S=\(\left\{19\right\}\)
b)\(\sqrt{x^2-2x+4}=2x-2\) Đk \(x^2-2x+4=\left(x-1\right)^2+3>0\forall x\in R\)
\(\Leftrightarrow x^2-2x+4=4x^2-8x+4\)
\(\Leftrightarrow3x^2-6x=0\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy S=\(\left\{2\right\}\)
c)\(\sqrt{x^2-10x+25}-5=3x\) ĐK \(x^2-10x+25=\left(x-5\right)^2>0\forall x\in R\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3x-5\)
\(\Leftrightarrow\left|x-5\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3x-5\\x-5=5-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{5}{2}\right\}\)