\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Điều kiện xác định : \(2\le x\le4\)

Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)

Lại có vế phải : \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

Do đó pt tương đương với \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\x^2-6x+11=2\end{cases}\) \(\Leftrightarrow x=3\left(tmdk\right)\)

Vậy pt có nghiệm x = 3

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

4 tháng 12 2019

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

5 tháng 12 2019

@tran duc huy Bình phương rồi chuyển vế nha.

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)

\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)

\(\Leftrightarrow6x^2+15x-26=0\)

b/ ĐKXĐ: ...

Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)

\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)

c/ĐKXĐ: ...

\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)

Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x-42=0\)

NV
23 tháng 10 2019

d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)

Đặt \(\sqrt{x^2+x+4}=a>0\)

\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)

e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)

Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)

\(\frac{a^2-4}{3}+a-2=0\)

\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)

1 tháng 10 2019

ĐK: \(x^4-4x^3+14x-11\ge0\) (*)

\(PT\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3+14x-11=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3-x^2+16x-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(tm)

NV
1 tháng 10 2019

e/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x+3-\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=x-1\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

f/ \(\Leftrightarrow\left\{{}\begin{matrix}x+5\ge0\\x^3+x^2+6x+28=\left(x+5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x^3-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x-1\right)\left(x^2+x-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1\pm\sqrt{13}}{2}\\\end{matrix}\right.\)

30 tháng 12 2019

ĐK: \(x>0\)

\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)

Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)

\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)

\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)

\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)

\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)

Vậy...

7 tháng 11 2019

a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)

\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)

đặt\(x^2+x+1=t\left(t>0\right)\)

\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)

bình phương 2 vế pt trở thành:

\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)

\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m

vậy pt vô nghiệm

NV
7 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)

\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)

\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))

\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)

\(\Leftrightarrow11a^2+6a-25=0\)

Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó

b/

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)

\(\Leftrightarrow\sqrt{a^2+3a}=2\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)