K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 5 2021

\(x^2+x+1=2xy+y\)

\(\Leftrightarrow4x^2+4x+4-8xy-4y=0\)

\(\Leftrightarrow\left(2x+1\right)^2-4y\left(2x+1\right)=-3\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-4y\right)=-3\)

Từ đây bạn giải ra nghiệm. 

16 tháng 5 2021

x2 + x + 1 = 2xy + y

<=> x2 + ( 2y + 1 )x - y + 1 = 0 (*)

Δ = b2 - 4ac = ( 2y + 1 )2 - 4( -y + 1 ) = 4y2 + 4y + 1 + 4y - 4 = 4y2 + 8y - 3

(*) có nghiệm <=> Δ ≥ 0 <=> 4y2 + 8y - 3 ≥ 0 <=> \(\orbr{\begin{cases}y\ge\frac{-2+\sqrt{7}}{2}\\y\le\frac{-2-\sqrt{7}}{2}\end{cases}}\)

Vì y nguyên => y ∈ { -1 ; 0 }

Với y = -1 (*) trở thành x2 - x + 2 = 0 <=> ( x + 1 )( x - 2 ) = 0 <=> x = -1 (nhận) hoặc x = 2 (nhận)

Với y = 0 (*) trở thành x2 + x - 1 = 0 dễ thấy phương trình này không có nghiệm nguyên :>

Vậy ( x ; y ) = { ( -1 ; -1 ) , ( 2 ; -1 ) }

5 tháng 1 2018

pt <=> x^2+x+1-(2xy+y) = 0

<=> (x^2+1/2.x)+(1/2.x+1/4)-y.(2x+1)+3/4=0

<=> 1/2.x.(2x+1)+1/4.(2x+1)-y.(2x+1) = -3/4

<=> (2x+1).(1/2.x+1/4-y) = -3/4

<=> (2x+1).(2x+1-4y) = -3

Đến đó bạn tự giải nha ( dùng ước bội )

Tk mk nha

5 tháng 1 2018

sorry tớ mới lơp 7

3 tháng 3 2022

bn học Δ chx nhỉ

3 tháng 3 2022

Lớp 8 chx học cái đó, này bài của đứa em :((

Còn mình thì học r, tại lớp 9 học r nhm sợ đứa e ko hiểu cái đăng lên , k ngờ rằng ....

3 tháng 12 2021

1.  \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)

\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)

Ta lập bảng giá trị:

\(2y-1\)15-1-5
\(2x+1\)51-5-1
\(x\)20-3-1
\(y\)130-2

Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)

3 tháng 12 2021

 2xy-x+y=3

2(2xy-x+y)=2.3

4xy-2x+2y=6

2x(2y-1)-2y=6

2x(2y-1)-2y+1=6+1

2x(2y-1)-(2y-1)=7

(2x-1)(2y-1)=7

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
$x^2-2xy+5y^2=y+1$

$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$

$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$

$\Leftrightarrow y+1-4y^2\geq 0$

$\Leftrightarrow 4y^2-y-1\leq 0$

$\Leftrightarrow 4y^2-y-3\leq -2<0$

$\Leftrightarrow (y-1)(4y+3)<0$

$\Leftrightarrow \frac{-3}{4}< y< 1$ 

$y$ nguyên nên $y=0$ 

Khi đó: $x^2=1\Leftrightarrow x=\pm 1$ 

Vậy $(x,y)=(\pm 1,0)$

26 tháng 5 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Leftrightarrow2y+2x+1=xy\)

\(\Rightarrow2y+2x-xy=-1\)

\(\Rightarrow y\left(2-x\right)+2x=-1\)

\(\Rightarrow y\left(2-x\right)+2x-4=-1-4\)

\(\Rightarrow y\left(2-x\right)-4+2x=-5\)

\(\Leftrightarrow y\left(2-x\right)-2\left(2-x\right)=-5\)

\(\Leftrightarrow\left(y-2\right)\left(2-x\right)=-5\)

y-2-5-1
2-x15-1-5
x1-337
y-3173

Vậy các cặp số (x,y) thỏa mãn là (1, -3); (-3; 1); (3, 7); (7, 3).

26 tháng 5 2017

Nhờ bạn sửa lại dòng 2 : \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\). Bạn sửa lại thành \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)

25 tháng 2 2018

x2+2xy+x+y2+4y=0

x[x+2y+1]y[4+y]=0

x=0

y=0

y=-4

x=-1

y=-2