K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

  x^4 + 2x^3 - 4x^2 - 5x - 6 = 0 
<=>x^4 - 2x^3 + 4x^3 - 8x^2 + 4x^2 - 8x + 3x - 6 = 0 
<=> x^3(x - 2) + 4x^2(x - 2) + 4x(x - 2) + 3(x - 2) = 0 
<=>(x - 2)(x^3 + 4x^2 + 4x + 3) = 0 
<=>(x - 2)(x^3 + 3x^2 + x^2 + 3x + x + 3) = 0 
<=>(x - 2)[x^2(x + 3) + x(x + 3) + (x + 3)] = 0 
<=>(x - 2)(x + 3)(x^2 + x + 1) = 0 

8 tháng 3 2020

\(\text{a) (5x+2)(x-7)=0}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)

Vậy ...

#Thảo Vy#

8 tháng 3 2020

\(\text{b) (x^2-1)(x+3)=0}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\hept{\begin{cases}x+1=0\\x-1=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\\x=-3\end{cases}}\)

Vậy...

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

12 tháng 7 2015

\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)

=> x + 2 = 0 hoặc x + 5 = 0

=> x = -2 hoặc x = - 5

2, x^4 - 5x^2 +  4 = 0 

x^4  - 4x^2  - x^2 + 4 = 0 

x^2 ( x^2 - 4) - ( x^2 - 4) = 0 

( x^2 - 1)( x^2 - 4) = 0 

( x - 1 )( x + 1)( x - 2)( x + 2) = 0

=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2

Đúng cho mi8nhf mình giải tiếp cho

3 tháng 2 2018

x^4 + 2x^3 + 5x^2 + 4x-12 = 0 
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0 
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0 
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0 
<=>(x-1).(x+2).(x^2+x+6) = 0 
<=> x= 1 hoặc x = -2 

Chúc học tốt ( hên xui đó nha )

3 tháng 2 2018

\(x^4+2x^3+5x^2+4x-12=0.\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

\(\text{Vì }x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\left(\text{nên vô No}\right)\)

1, bạn làm hai cái mũ 4 ra là làm đc

2) Ta có : x4 - x3 - x + 1 = 0

<=> x3(x - 1) - (x - 1) = 0 

<=> (x - 1)(x3 - 1) = 0 

<=> (x - 1)(x - 1)(x2 + x + 1) = 0 

<=> (x - 1)2(x2 + x + 1) = 0

<=> x - 1 = 0 (vì x2 + x + 1 > 0 với mọi x)

<=> x = 1

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)