K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2024

Lời giải:

$F(x)=x^3+x^2+(2a+3)x-3a=x^2(x-2)+3x(x-2)+(2a+9)x-3a$

$=x^2(x-2)+3x(x-2)+(2a+9)(x-2)+2(2a+9)-3a$

$=(x-2)(x^2+3x+2a+9)+(a+18)$

$\Rightarrow F(x)$ chia $x-2$ dư $a+18$

Để số dư là $14$

$\Rightarrow a+18=14$

$\Rightarrow a=-4$

16 tháng 12 2016

Do bậc của đa thức chia là 2 nên da thức dư có bậc cao nhất là 1 hay

f(x) = (x2 - 5x + 6)(1 - x2) + ax + b

f(x) chia cho x - 2 dư 2 nên áp dụng định lý bê du ta có khi x = 2 thì f(x) = 2

 2a + b = 2

Tương tự chia cho x - 3 dư 7

=> f(3) = 3a + b = 7

=> a = 5, b = - 8

Thế vô là tìm được f(x)

Bài 2

\(A⋮B\)

\(\Leftrightarrow10x^3-15x^2-8x^2+12x+2x-3-2⋮2x-3\)

\(\Leftrightarrow2x-3\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{2;1\right\}\)

a: f(x) chia hết cho x^2+x+1

=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)

=>-a=0 và b+1=0

=>a=0 và b=-1

b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)

\(=x+a+\dfrac{x+b+a}{x^2-1}\)

Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3

=>b+a=3

28 tháng 5 2015

f(x) chia hết cho x-2 nên f(x) = (x-2).g(x)

\(\Rightarrow f\left(2\right)=8+4a+2b+c=0\)

\(f\left(x\right)=\left(x^2-1\right).h\left(x\right)+2x\)

\(\Rightarrow f\left(1\right)=\left(1^2-1\right).h\left(x\right)+2=2=1+a+b+c\)

\(f\left(-1\right)=-2=1+a-b+c\)

Giải hệ 3 phương trình tìm được a,b,c

4 tháng 7 2015

=> f(2) = 22 + 2a+b = 4+3a+b=0

=> f(2) chia cho 2-1 dư 3

=> f(2) chia 1 dư 3

 Vô lí vì 0 chia hết cho mọi số

    Vậy không có a,b cần tìm

 

4 tháng 7 2015

\(f\left(2\right)=4+2a+b=0\text{ (1)}\)

\(f\left(x\right)=\left(x-1\right)\left(x-x_0\right)+3\)\(\Rightarrow f\left(1\right)=1^2+a+b=\left(1-1\right)\left(1-x_0\right)+3=3\)

\(\Rightarrow a+b=2\text{ (2)}\)

Từ (1) và (2) suy ra \(a=-6;b=8\)