K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

lời giải nè

f(x)=x14-(13+1)x13+(13+1)x12-....+(13+1)x2-(13+1)x+(13+1)

mà theo đầu bài f(x)=13 => chỗ nào có 13 ta thay thành x

=>f(13)=x14-(x+1)x13+(x+1)x13-.......+(x+1)x2-(x+1)x+(x+1)

<=>f(13)=x14-x14-x13+x14+x13-.......+x3_x2-x2-x+x+1=1

=>f(13)=1

k cho mk nha!!!

Bài 2: 

x=13 nên x+1=14

\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)

\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)

=14-x=1

24 tháng 2 2022

x=13 nên x+1=14

f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14

=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14

=14-x=1

  
6 tháng 5 2018

Kb nha ,mik sẽ trả lời giúp bạn 

6 tháng 5 2018

Bài này là bài ktra hk 2 của mình 

30 tháng 6 2016

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=0-1=-1\)

28 tháng 12 2015

X=-2

 Tick rồi mk ns cách làm cho,hứa

NV
28 tháng 12 2018

Câu 1/

\(f\left(13\right)=x^{13}\left(x-14\right)+14x^{12}-...-14x+14\)

\(=-x^{13}+14x^{12}-14x^{11}+...-14x+14\)

\(=x^{12}\left(-x+14\right)-14x^{11}+...-14x+14\)

\(=x^{12}-14x^{11}+...-14x+14=...\)

\(=-x+14=1\)

(Bạn để ý quy luật sau các bước rút gọn lần lượt thì mũ chẵn sẽ biến thành hệ số 1, mũ lẻ thành hệ số -1 nên x sẽ có hệ số -1)

Câu 2:

+) \(f\left(-x\right)=f\left(x\right)\) có: \(f_3\left(x\right);f_4\left(x\right);f_6\left(x\right)\)

+) \(f\left(-x\right)=-f\left(x\right)\) có: \(f_1\left(x\right);f_2\left(x\right);f_5\left(x\right)\)

+) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\) có: \(f_1\left(x\right);f_2\left(x\right)\)

+) \(f\left(x_1x_2\right)=f\left(x_1\right).f\left(x_2\right)\) có: \(f_1\left(x\right);f_3\left(x\right);f_5\left(x\right);f_6\left(x\right)\)

7 tháng 4 2017

Bài 1:

\(f\left(x\right)=x^2+8x+25\)

Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)

\(\Rightarrow x^2+8x+16+9=0\)

\(\Rightarrow\left(x+4\right)^2+9=0\)

Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )

Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm

Bài 2:

\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)

\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)

Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)

\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)

Vậy \(f\left(13\right)=1\)