Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
Bài 1:
Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Leftrightarrow x\left(3x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)
1.
\(sin^2x+cos^2x=1\Rightarrow\left(\dfrac{1}{4}\right)^2+cos^2x=1\)
\(\Rightarrow cos^2x=\dfrac{15}{16}\Rightarrow cosx=\dfrac{\sqrt{15}}{4}\)
2.
\(tanx=\dfrac{1}{3}\Rightarrow tan^2x=\dfrac{1}{9}\Rightarrow\dfrac{sin^2x}{cos^2x}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{sin^2x}{1-sin^2x}=\dfrac{1}{9}\Rightarrow9sin^2x=1-sin^2x\)
\(\Rightarrow sin^2x=\dfrac{1}{10}\Rightarrow sinx=\dfrac{\sqrt{10}}{10}\)
\(pt\Leftrightarrow\cos\frac{x}{4}\sin x+\cos x+\sin\frac{x}{4}\cos x=3\left(\sin^2x+\cos^2x\right)=3\)
Mà \(\sin\alpha;\text{ }\cos\alpha\le1\forall\alpha\)
\(\Rightarrow\cos\frac{x}{4}.\sin x\le1.1;\text{ }\sin\frac{x}{4}.\cos x\le1.1;\text{ }\cos x\le1\forall x\)
\(\Rightarrow\cos\frac{x}{4}.\sin x+\sin\frac{x}{4}.\cos x+\cos x\le3\text{ }\forall x\)
Dấu "=" xảy ra khi \(\cos x=1;\text{ }\cos\frac{x}{4}.\sin x=1;\text{ }\cos x.\sin\frac{x}{4}=1\)
\(\Leftrightarrow\cos x=1;\text{ }\sin\frac{x}{4}=1;\text{ }\cos\frac{x}{4}.\sin x=1\)
Pt trên vô nghiệm do \(\cos x=1\text{ thì }\sin x=0\Rightarrow\cos\frac{x}{4}.\sin x=0\)
Vậy phương trình đã cho vô nghiệm.