K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2018

Lời giải:

Ta có: \(f(x)=\sin ^4x+\cos ^4x=(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-\frac{1}{2}(2\sin x\cos x)^2\)

\(=1-\frac{1}{2}\sin ^2(2x)\)

Do đó: \(f'(x)=[1-\frac{1}{2}\sin ^2(2x)]'=-\frac{1}{2}.2.\sin 2x(\sin 2x)'\)

\(=-2\sin 2x.\cos 2x=-\sin 4x\)

Và: \(g(x)=\frac{1}{4}(\cos 4x)\Rightarrow g'(x)=\frac{1}{4}.(4x)'-\sin (4x)=-\sin 4x\)

Do đó: \(f'(x)=g'(x)\)

NV
20 tháng 5 2020

a/ \(f'\left(x\right)=2sinx.cosx-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow x=k\pi\)

b/ \(f'\left(x\right)=cosx+sin4x+sin6x=0\)

\(\Leftrightarrow cosx+2sin5x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin5x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\sin5x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\5x=-\frac{\pi}{6}+k2\pi\\5x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=-\frac{\pi}{30}+\frac{k2\pi}{5}\\x=-\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

20 tháng 5 2020

Mình cảm ơn bạn, bạn có thể giúp mình làm thêm một số bài nữa được không ạ?

NV
4 tháng 5 2020

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

NV
8 tháng 9 2021

\(f\left(x+3\right)=g\left(x\right)+x^2-10x+5\)

\(\Rightarrow f'\left(x+3\right)=g'\left(x\right)+2x-10\)

Thế \(x=1\) ta được:

\(f'\left(4\right)=g'\left(1\right)-8\)

\(\Rightarrow g'\left(1\right)=f'\left(4\right)+8=13\)

a: ĐKXĐ; 1-sin x>=0

=>sin x<=1(luôn đúng)

b: ĐKXĐ: 1-cosx>=0

=>cosx<=1(luôn đúng)

c: ĐKXĐ: 1-cos2x>=0

=>cos2x<=1

=>-1<=cosx<=1(luôn đúng)

 

NV
20 tháng 12 2020

\(f'\left(x\right)=cosx\)

\(f''\left(x\right)=-sinx\)

\(f^{\left(3\right)}\left(x\right)=-cosx\)

\(f^{\left(4\right)}\left(x\right)=sinx\)

Từ đó ta thấy được:

\(f^{\left(4k\right)}\left(x\right)=sinx\)

\(f^{\left(4k+1\right)}\left(x\right)=cosx\)

\(f^{\left(4k+2\right)}\left(x\right)=-sinx\)

\(f^{\left(4k+3\right)}\left(x\right)=-cosx\)

\(\Rightarrow f^{\left(4k\right)}\left(x\right)+f^{\left(4k+1\right)}\left(x\right)+f^{\left(4k+2\right)}\left(x\right)+f^{\left(4k+3\right)}\left(x\right)=0\)

\(\Rightarrow S=f^{\left(2017\right)}\left(x\right)+f^{\left(2018\right)}\left(x\right)+f^{\left(2019\right)}\left(x\right)\)

(Toàn bộ phần tổng đằng trước nhóm thành các cụm 4 số và triệt tiêu)

\(S=f^{\left(4.504+1\right)}\left(x\right)+f^{\left(4.504+2\right)}\left(x\right)+f^{\left(4.504+3\right)}\left(x\right)\)

\(=cosx-sinx-cosx=-cosx\)

21 tháng 12 2020

undefined

NV
4 tháng 4 2021

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm

NV
15 tháng 4 2021

Đề là \(f\left(x\right)=\dfrac{1}{2}sin2x-cosx-x+2015\) đúng không nhỉ?

\(f'\left(x\right)=cos2x+sinx-1\)

\(f'\left(x\right)=0\Leftrightarrow cos2x+sinx-1=0\)

\(\Leftrightarrow1-2sin^2x+sinx-1=0\)

\(\Leftrightarrow sinx\left(1-2sinx\right)=0\Rightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)