Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
a,\(4x\left(2x+3\right)-x\left(8x-1\right)=5\left(x+2\right)\)
\(< =>8x^2+12x-8x^2+x=5x+10\)
\(< =>13x=5x+10< =>8x=10\)
\(< =>x=\frac{10}{8}=\frac{5}{4}\)
b, \(\left(3x-5\right)\left(3x+5\right)-x\left(9x-1\right)=4\)
\(< =>9x^2-25-9x^2+x=4\)
\(< =>x=4+29=33\)
c,\(3-4x\left(25-2x\right)=8x^2+x-300\)
\(< =>3-100x+8x^2=8x^2+x-300\)
\(< =>x+100x=3+300\)
\(< =>101x=303< =>x=\frac{303}{101}=3\)
d,\(2\left(1-\frac{3x}{5}\right)-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
\(< =>2-\frac{6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(< =>-\frac{24x}{20}-\frac{4+6x}{20}+\frac{30x+15}{20}=5\)
\(< =>\frac{30x-6x-24x+15-4}{20}=5\)
\(< =>\frac{11}{5}=5< =>11=25\)(vo li)
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
Trả lời:
(bài này tìm GTNN, GTLN đúng không bạn?)
\(G=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+3\right)\left(x+2\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu "=" xảy ra khi \(x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của G = - 36 khi x = 0; x = - 5
\(H=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+16-21\right)=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x + 4 = 0 <=> x = - 4
Vậy x + 4 = 0 <=> x = - 4
Vậy GTLN của H = 21 khi x = - 4
\(I=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của I = 5 khi x = 2