K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

Để \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(-2\right)=8-2m-n=0\) ( định lí Bê-du )

\(\Leftrightarrow2m+n=8\)

Vậy m, n tùy ý sao cho \(2m+n=8\)

21 tháng 9 2021

\(f\left(x\right)⋮g\left(x\right)\Leftrightarrow3x^2-mx-2=\left(x-m\right)\cdot a\left(x\right)\)

Thay \(x=m\)

\(\Leftrightarrow3m^2-m^2-2=0\\ \Leftrightarrow2m^2=2\Leftrightarrow m^2=1\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

a: f(x) chia hết cho g(x)

=>2x^2+4x-x-2+a+2 chia hết cho x+2

=>a+2=0

=>a=-2

b: f(x) chia hết cho g(x)

=>3x^2+6x+(m-6)x+2m-12-2m+7 chia hết cho x+2

=>-2m+7=0

=>m=7/2

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$

9 tháng 9 2021

a)\(f\left(x\right)=5x^3-9x^2+2x+m=5x^2\left(x+2\right)-19x\left(x+2\right)+40\left(x+2\right)-80+m=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)

Để \(f\left(x\right)⋮g\left(x\right)\) thì \(m-80=0\Leftrightarrow m=80\)

b) \(f\left(x\right)=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)

Để f(x) chia g(x) có số dư bằng 3 thì \(m-80=3\Leftrightarrow m=83\)

\(\Leftrightarrow10x^2-15x+8x-12-m+12⋮2x-3\)

hay m=12