\(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

24 tháng 9 2019

a) Ta có x/3= y/4 => x/3 . 1/5 = y/4 .1/5

                           => x/15 = y/20 (1)

     Ta lại có y/5= z/7 => y/5 . 1/4 =z/7 .1/4

                                => y/20 = z/28  (2)

Từ (1), (2) =>  x/15=y/20=z/28 => 2x/30 = 3y/60 = z/28

Áp dụng tính chất dãy tí số bằng nhau, ta có 

2x/30 = 3y/60 = z/28 = (2x + 3y -z )/ (30+60-28) = 124/62 = 2

=> x =30 , y= 40, z= 56

13 tháng 8 2017

ta co \(\frac{x+z+2}{y}\)=\(\frac{y+z+1}{x}\)=\(\frac{x+y-3}{z}\)=\(\frac{x+z+2+y+z+1+x+y-3}{x+y+z}\)

=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)=>\(x+y+z\)=\(\frac{1}{2}\)

=>\(\frac{x+z+2}{y}\)=\(\frac{1}{\frac{1}{2}}\)=2 =>\(\frac{x+z+2}{y}\)+\(1\)=\(3\)

=>\(\frac{x+y+z+2}{y}\)=\(3\)=>\(\frac{5}{\frac{2}{y}}\)=\(3\) =>\(y\)=\(\frac{5}{6}\)

tinh x ,z cung tuong tu nhu vay

14 tháng 8 2017

ê hoàn ơi mày là thằng gà, hồi trc mày còn bảo tao cách làm vậy o tao voi nhe thang hoan kia

mà bây giờ mày quên là sao, ngu ko tả nổi, mà mày k ch

16 tháng 8 2019

a) Ta có \(x:2=y:-5.\)

=> \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;-10\right).\)

k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)\(2x+3y-z=186.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

Bạn này riết quá, mình cũng đang bận nữa :(

b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)

Vậy...

c) Xem lại đề nhé.

d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)

Vậy...

e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)

\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)

Vậy...

f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

g) Áp dụng TCDTSBN:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy...

h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)

Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)

Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)

Ta có hệ :

\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)

Vậy...

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...