Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(.K=\frac{x+99}{-1}=\frac{y-98}{2}=\frac{z+97}{-3}\)
\(\Rightarrow\frac{x+97}{K}=-1\)
\(\Rightarrow\frac{y-98}{K}=2\)
\(\Rightarrow\frac{z+97}{K}=-3\)
\(\Rightarrow\frac{x+99}{K}+\frac{y-98}{K}+\frac{z+97}{K}=\left(-1\right)+2+\left(-3\right)\)
\(\Rightarrow\frac{\left(x+99\right)+\left(y-98\right)+\left(z+97\right)}{K}=-2\)
Đến đây thì ... mình quên mất tiêu rồi bạn tự nghĩ tiếp nha :)
\(\frac{\left(x+1\right)3}{111\cdot3}=\frac{3x+3}{333}\)
\(\frac{\left(y+2\right)2}{222\cdot2}=\frac{2y+4}{444}\)
Ta có: \(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}=\frac{3x+3+2y+4+z+3}{333+444+333}=\frac{\left(3x+2y+z\right)+\left(3+4+3\right)}{1110}=\frac{989+10}{1110}=\frac{999}{1110}=\frac{9}{10}\)
\(\frac{3x+3}{333}=\frac{9}{10}\Rightarrow3x+3=\frac{2997}{10}\Rightarrow3x=\frac{2967}{10}\Rightarrow x=\frac{989}{10}=98,9\)
Tìm y và z tương tự nhé! Ko hiểu chỗ nào thì nói tớ!
\(\frac{x+99}{-1}=\frac{y-98}{2}=\frac{z+97}{-3}=\frac{x+99-\left(y-98\right)+\left(z+97\right)}{-1-2+\left(-3\right)}=\frac{\left(x-y+z\right)+294}{-6}=\frac{50+294}{-6}=-\frac{172}{3}\)
x + 99 = 172/3 => x =-125/3
y - 98 = - 344/3 => y = - 50 /3
z+ 97 = 172 => z = 75
Chắc câu hỏi là tìm x, y, z
1) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{x+y-z-10}{2}=\frac{8-10}{2}=-1\)
=> x-1 = 3.(-1) => x = -2
y-2 = 4.(-1) => y = -2
z+7 =5.(-1) => z = -12
2) Làm tương tự, nhưng trước khi cộng tử và mẫu các phân số với nhau thì nhân cả tử và mẫu phân số thứ nhất với 3; phân số thứ hai với 2 và phân số thứ ba với 4 để xuất hiện tổng 3x + 2y +4z.
\(\frac{3\left(x+1\right)}{3.3}=\frac{2\left(y+2\right)}{-4.2}=\frac{4\left(z-3\right)}{5.4}=\frac{3\left(x+1\right)+2\left(y+2\right)+4\left(z-3\right)}{9-8+20}=\frac{47-5}{21}=2\)
=> x + 1 = 3.2 => x = 5
y+ 2 = -4.2 => y = -10
z-3 =5.2 => z = 13