\(\frac{x+5\sqrt{x}-2}{x+2\sqrt{x}-3}\)-\(\frac{\sqrt{x}+1}{\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

a)ĐKXĐ : x > 0 

P = \(\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{1}{\sqrt{x}}.\left(\sqrt{x}-1+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\sqrt{x}-1}{\sqrt{x}}.\left(1-\frac{1}{\sqrt{x}+1}\right)\)

     = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right).\sqrt{x}}{\sqrt{x}}\)

       = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy P = \(\frac{\sqrt{x}+1}{\sqrt{x}}\)

b) x = \(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

=> P = \(\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1}=\frac{\sqrt{3}}{\sqrt{3}-1}\)

        = \(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3+1}\right)}=\frac{3+\sqrt{3}}{3-1}=\frac{3+\sqrt{3}}{2}\)

c)\(P\sqrt{x}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}=5\sqrt{x-4}\)

Đặt \(\hept{\begin{cases}a=\sqrt{x}\\b=\sqrt{x-4}\end{cases}\Rightarrow a^2+b^2=x-\left(x-4\right)=4}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=4\\b=5a-4\end{cases}\Rightarrow\hept{\begin{cases}a^2-\left(5a-4\right)^2=4\left(^∗\right)\\b=5a-4\end{cases}}}\)

Từ (*) <=> a2 -(25a2 -40a + 16 ) =4

        <=>  -24a2 + 40a - 20        = 0

=> \(\Delta'=-80< 0\)

=> PT vô nghiệm 

=> ko tồn tại x thỏa mãn

20 tháng 4 2020

bn lm sai đề bài r 

10 tháng 9 2020

\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

a) \(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{x-1}\right)\)

\(P=\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\div\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\div\frac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\times\frac{x-1}{x-4}\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-4}\)

\(P=\frac{x-3\sqrt{x}+2}{x-4}\)

b) Để P < 0

=> \(\frac{x-3\sqrt{x}+2}{x-4}< 0\)

Xét hai trường hợp

I) \(\hept{\begin{cases}x-3\sqrt{x}+2>0\\x-4< 0\end{cases}}\)

+) \(x-3\sqrt{x}+2>0\)

<=> ( √x - 1 )( √x - 2 ) > 0

1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>4\end{cases}}\Leftrightarrow x>4\)(1)

2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 1\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 4\end{cases}}\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ : \(0\le x< 1\)(2)

+) x - 4 < 0 <=> x < 4 (3)

Từ (1), (2) và (3) => \(0\le x< 1\)

II) \(\hept{\begin{cases}x-3\sqrt{x}+2< 0\\x-4>0\end{cases}}\)

 +) \(x-3\sqrt{x}+2< 0\)

<=> ( √x - 1 )( √x - 2 ) < 0

1. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 1\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>4\end{cases}}\)( loại )

2. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 4\end{cases}}\Leftrightarrow1< x< 4\)(1)

+) x - 4 > 0 <=> x > 4 (2)

Từ (1) và (2) => Không có giá trị của x thỏa mãn

Vậy với \(0\le x< 1\)thì P < 0 

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

11 tháng 8 2020

Giair tiếp nx chứ thịnh

hết cỡ rồi

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Lời giải:
ĐK: $x\geq 0; x\neq 9$

a) Khả năng cao dấu nhân nằm giữa hai ngoặc lớn phải là dấu chia.

\(Q=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-(3x+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{2\sqrt{x}-2-(\sqrt{x}-3)}{\sqrt{x}-3}\)

\(=\frac{-3(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{-3(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{-3}{\sqrt{x}+3}\)

b)

Để $Q< \frac{-1}{2}\Leftrightarrow \frac{-3}{\sqrt{x}+3}< \frac{-1}{2}$

$\Leftrightarrow \sqrt{x}+3< 6$

$\Leftrightarrow \sqrt{x}< 3$

$\Rightarrow 0\leq x< 9$

Kết hợp với điều kiện xác định suy ra $0\leq x< 9$ thì $Q< \frac{-1}{2}$

c)

\(\sqrt{x}\geq 0, \forall x\geq 0\Rightarrow \sqrt{x}+3\geq 3\Rightarrow \frac{1}{\sqrt{x}+3}\leq \frac{1}{3}\)

\(\Rightarrow Q=\frac{-3}{\sqrt{x}+3}\geq \frac{-3}{3}=-1\)

Vậy GTNN của $Q$ là $-1$ tại $x=0$