K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

<=> 4x-16=-3x+6

<=> 4x-16+3x-6=0

<=> 7x-22=0

<=> 7x=22

<=> \(x=\frac{22}{7}\)(TMĐK)
 

23 tháng 3 2019

\(\Leftrightarrow\frac{x^2+4}{8}-1+\frac{x^2+3}{7}-1+\frac{x^2+2}{6}-1=\frac{x^2+1}{5}-1+\frac{x^2}{4}-1+\frac{x^2-1}{3}-1\)

\(\Leftrightarrow\frac{x^2-4}{8}+\frac{x^2-4}{7}+\frac{x^2-4}{6}-\frac{x^2-4}{5}-\frac{x^2-4}{4}-\frac{x^2-4}{3}=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)

\(\Leftrightarrow x^2-4=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

19 tháng 10 2019

a) \(\frac{x^2+5x}{5x^2+x^3}\)

\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)

b) \(\frac{x^4+x^2+1}{x^3+1}\)

\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x+1}\)

19 tháng 10 2019

\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

25 tháng 1 2022

h.3x - 2/6 - 5 = 3 - 2(x + 7)/4

<=> 3x - 2 - 30/6 = 3 - 2(x + 7)/4

<=> 3x - 32/6 = 3 - 2x - 14/4

<=> 3x - 32/6 = -2x - 11/4

<=> 6x - 64/12 = -6x - 33/12

<=> 6x - 64 = -6x - 33 <=> 12x = 31 <=> x = 31/12

29 tháng 4 2020

1) \(\frac{x-3}{2}+\frac{4x+1}{3}=\frac{2x-7}{6}\)

<=> 3(x - 3) + 2(4x + 1) = 2x - 7

<=> 3x - 9 + 8x + 2 = 2x - 7

<=> 11x - 7 = 2x - 7

<=> 11x - 7 - 2x = -7

<=> 9x - 7 = -7

<=> 9x = -7 + 7

<=> 9x = 0

<=> x = 0

13 tháng 2 2020

Đặt \(x^2+x+10=u\)

Phương trình trở thành: \(\frac{u-6}{2}+\frac{u-3}{3}=\frac{u+3}{5}+\frac{u+6}{6}\)

\(\Rightarrow\frac{u}{2}-3+\frac{u}{3}-1=\frac{u}{5}+\frac{3}{5}+\frac{u}{6}+1\)

\(\Rightarrow\frac{u}{2}+\frac{u}{3}-\frac{u}{5}-\frac{u}{6}=3+1+1+\frac{3}{5}\)

\(\Rightarrow u\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=\frac{28}{5}\)

\(\Rightarrow u.\frac{7}{15}=\frac{28}{5}\Rightarrow u=12\)

Lúc đó \(x^2+x+10=12\)

\(x^2+x-2=0\)

Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)