Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x:3=y:5 suy ra 4x:12=y:5 và 4x-y=14
Áp dụng tính chất của dãy tỉ số bằng nhau
x:3=y:5=4x-y:12-5=14:7=2
+)x:3=2 suy ra x=6
+)y:7=2 suy ra y=14
Vậy x=6;y=7
1. Ta có: \(3x=8y\)=> \(\frac{x}{8}=\frac{y}{3}\)=> \(\frac{x}{8}=\frac{2y}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy x = 16 và y = 6
2. xem lại đề
3x = 8y và x - 2y = 4 . Tìm x và y
3x = 8y
\(\Rightarrow\frac{x}{8}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}=\frac{x-2y}{8-2}=\frac{4}{2}=2\)
Từ \(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{2y}{6}=2\Rightarrow2y=12\Rightarrow y=6\)
Vậy x= 16 và y = 6
\(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{5}.\frac{1}{8}=\frac{y}{6}.\frac{1}{8}\Rightarrow\frac{x}{40}=\frac{y}{48}\left(1\right)\)
\(\Leftrightarrow\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{y}{8}.\frac{1}{6}=\frac{z}{11}.\frac{1}{6}\Rightarrow\frac{y}{48}=\frac{z}{66}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)
Áp dụng tính chát của dãy tỉ số bằng nhau ta có :
Em tự thay số vào mà tính nha
Study well
2 ) So sánh 333^444 và 444^333:
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
1,\(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Aps dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.147}{49}=\frac{1764}{49}\)=36
\(\Rightarrow\hept{\begin{cases}x=36.18:12=54\\y=36.16:12=48\\z=36.15:12=45\end{cases}}\)
Vậy:.......
2) Ta có: \(\hept{\begin{cases}3x=2y;7y=5z\\x-y+z=32\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}.}\)
\(\Rightarrow\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Vậy \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Ủng hộ nha m.n
1. \(3^x+3^{x+2}=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=243\)
\(3^x=3^5\)
\(x=5\)
2. \(2^{x+3}-2^x=224\)
\(2^x\left(2^3-1\right)=224\)
\(2^x.7=224\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
2,Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x+y=90 nên:3k+6k=90
\(\Leftrightarrow\)k(3+6)=90
9k=90
k=90:9=10
Suy ra k=10\(\hept{\begin{cases}x=3.10=30\\y=6.10=60\end{cases}}\)
3,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 4x-y=42 nên:4.3k-6k=42
\(\Leftrightarrow\) 12k-6k=42
6k=42
k=42:6=7
Suy ra k=7\(\hept{\begin{cases}x=3.7=21\\y=6.7=42\end{cases}}\)
4,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì xy=162 nên:3k.6k=162
\(\Leftrightarrow\)k2.18=162
k2=162:18
k2=9
k=\(\pm\)3
Với k=3\(\hept{\begin{cases}x=3.3=9\\y=6.3=18\end{cases}}\)
Với k=-3\(\hept{\begin{cases}x=3.\left(-3\right)=-9\\y=6.\left(-3\right)=-18\end{cases}}\)
5,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 2x2-y2=-8 nên:2.(3k)2-(6k)2=-8
\(\Leftrightarrow\)2.9k2-36k2=-8
18k2-36k2=-8
-18k2=-8
k2=-8/-18=4/9
k=\(\pm\)\(\frac{2}{3}\)
Với k=\(\frac{2}{3}\)\(\hept{\begin{cases}x=\frac{2}{3}.3=2\\y=\frac{2}{3}.6=4\end{cases}}\)
Với k=\(\frac{-2}{3}\)\(\hept{\begin{cases}x=\frac{-2}{3}.3=-2\\y=\frac{-2}{3}.6=-4\end{cases}}\)
6,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x-y=9 nên:3k-6k=9
\(\Leftrightarrow\) -3k=9
k=9:(-3)
k=-3
Suy ra\(\hept{\begin{cases}x=-3.3=-9\\y=-3.6=-18\end{cases}}\)