Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x=3y=7z\)
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)
\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)
b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)
c) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x.y.z=810.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
\(x.y.z=810\)
=> \(2k.3k.5k=810\)
=> \(30k^3=810\)
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k=3.\)
Với \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)
Chúc bạn học tốt!
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số = nhau , ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) = \(\frac{x-y+z}{10-15+21}\) = \(\frac{32}{16}\) = 2
Vậy: x = 2.10 = 20
y = 2.15 = 30
z = 2.21 = 42
b) Ta có: 2x = 3y = 5z
=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta đc:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) = \(\frac{x+y-z}{15+10-6}\) = \(\frac{95}{19}\) = 5
Vậy: x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)
d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)
a) Ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)
\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)
\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)
\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)
Vậy ___________________________________________________________