Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(< =>\left(x-1+x\right)\left(x-1\right)^2=10x-5x^2-11x-22\)
\(< =>-x^2+x-1-10x+5x^2+11x+22=0\)
\(< =>4x^2+3x+21=0\)
\(< =>\left(2x\right)^2+2.2x.\frac{3}{4}+\left(\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
\(< =>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
Do \(\left(2x+\frac{3}{4}\right)^2\ge0=>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}\ge20\frac{9}{25}>0\)
Vậy phương trình vô nghiệm
Bài làm:
a) đkxđ: \(x\ne\pm1\)
Ta có:
\(M=\frac{x+1}{x^2-1}-\frac{x^2+2}{x^3-1}-\frac{x+1}{x^2+x+1}\)
\(M=\frac{1}{x-1}-\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x+1}{x^2+x+1}\)
\(M=\frac{x^2+x+1-x^2-2-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x-1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x\left(1-x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{x}{x^2+x+1}\)
b) Mà x khác 1
=> x = -2, khi đó:
\(M=-\frac{-2}{4-2+1}=\frac{2}{3}\)
\(a)\frac{2x-1}{5x-10}\) \(\text{Đ}K:x\ne2\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}(TM)\)
\(b)\frac{x^2-x}{2x}\) \(\text{Đ}K:x\ne0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x.(x-1)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)
\(c)\frac{2x+3}{4x-5}\) \(\text{Đ}K:x\ne\frac{5}{4}\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=\frac{-3}{2}(TM)\)
\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\) \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)
\(\Leftrightarrow(x-1).(x+2)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)
gửi cho 4 câu trc
Đề sai ! Sửa nhé :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(\Leftrightarrow A=\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}\right)\)
\(\Leftrightarrow A=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{2x+4-4}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)
\(\Leftrightarrow A=\frac{2x\left(x-2\right)}{-x\left(x+2\right)}\)
\(\Leftrightarrow A=-\frac{2\left(x-2\right)}{x+2}\)
b) Để \(A\le-2\)
\(\Leftrightarrow-\frac{2\left(x-2\right)}{x+2}\le-2\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{x+2}\ge2\)
\(\Leftrightarrow\frac{x-2}{x+2}\ge1\)
\(\Leftrightarrow x-2\ge x+2\)
\(\Leftrightarrow-2\ge2\)(ktm)
Vậy để \(A\le-2\Leftrightarrow x\in\varnothing\)
a.
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2.\left(x^2+8\right)}{\left(x+2\right).\left(x^2+8\right)}-\frac{4\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2x^2+8-4x+8}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right)\)
\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\left(\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)\left(-x\right)}\right)\)
\(A=\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)
\(A=\frac{\left(2x^2-4x+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)
\(A=\frac{\left(2x^3-4x-4x-4x^2+8x+16x-32\right)}{-x^3+8}\)
\(A=\frac{2x^3-4x^2+16x-32}{-x^3+8}\)
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
Ta có \(x^2\ge0\Rightarrow x^2+5>0\)
\(\Rightarrow x+3< 0\Leftrightarrow x< -3\)
Vậy x < -3 thì ( đề bài )
~ Học tốt ~