\(\frac{x^2-4x+4}{3x^2-6x}\)cho tôi hỏi nếu tìm điều kiện xác định của phân thức thì ta c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

12 tháng 7 2018

\(A=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=4\sqrt{x}-\left(\sqrt{x}+3\right)\)

\(=3\sqrt{x}-3\)

\(B=\frac{\sqrt{\left(3x+2\right)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)

\(TH1:3x+2>0\Rightarrow B=1\)

\(TH2:3x+2< 0\Rightarrow B=-1\)

12 tháng 7 2018

A <=> 4√x - [ ( (√x )^2 + 2√x3+ 3^2)*( √x -3)]/ (x-9)

<=> 4√x - [(√x+3)^2×(√x-3)]/( x-9)

<=> 4√x - [(√x+3)*(x-9)]/(x-9)

<=> 4√x - √x -3

<=> 3√x -3

b, <=> √[(3*x) ^2+2*3x*2+2^2]/(3x+2)

<=> √[( 3x+2)^2] /(3x+2) 

<=> (3x+2)/(3x+2) = 1

22 tháng 8 2016

Toán Tuổi Thơ 2 chứ j,thế mà vẫn dc vào câu hỏi hay

21 tháng 8 2016
http://olm.vn/hoi-dap/question/678816.html
22 tháng 6 2017

a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)

vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)