K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Đây là toán lớp 7

7 tháng 8 2017

bài này dễ cực!lớp 7 thui mak!dựa vào tính chất của dãy tỉ số bằng nhau mak làm nghen!mk hơi lười!kakakakaka^^

11 tháng 1 2017

cho =2016 r` còn tính j nx

27 tháng 12 2016

Bằng =0 

nếu cần chi tiết xẽ có

28 tháng 12 2016

cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html

12 tháng 8 2016

thiếu đề nhé, x,y,z>0 nữa

Cần CM bđt phụ sau: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (a,b,c>0)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Theo bđt Cô-Si: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Tương tự: \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\)

Vậy ta đã CM đc bđt phụ

Đặt a=y+z;b=x+z;c=x+y

=>a+b+c=2x+2y+2z=2(x+y+z)

Ta có: \(2\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge9\)

\(=>\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2}\)

\(=>\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\ge\frac{9}{2}\)

\(=>\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\ge\frac{9}{2}\)

\(=>\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{9}{2}-3=\frac{3}{2}\)

Dấu "=" xảy ra <=>x=y=z

Vậy.........................

20 tháng 4 2016
Bạn dùng côsi cho các cặp đôi một ở vế trái rồi tổng 3 cái côsi lại xog chia 2 sẽ đc
20 tháng 4 2016

cm bài toán phụ :a2+b2>=ab

(a-b)2>= 0 => a2 -2ab+b2>=0 =>a2+b2>=2ab  (1)

 áp dụng (1) ta có : x2/y+y2/z>= 2x/z

                             y2/z2+z2/x2 >= 2y/x

                             x2/y2+z2/x2>=2z/x

  => 2(x2/y2 + y2/z2 +z2/x2 ) >=2(x/y+y/z +z/x)

=>x2/y/2+y2/z2 +z2/x>=x/y +y/z +z/x

16 tháng 1 2019

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta lại có: 

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x+y+z=1\)

Làm nốt