Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
thiếu đề nhé, x,y,z>0 nữa
Cần CM bđt phụ sau: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (a,b,c>0)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Theo bđt Cô-Si: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Tương tự: \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)
\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\)
Vậy ta đã CM đc bđt phụ
Đặt a=y+z;b=x+z;c=x+y
=>a+b+c=2x+2y+2z=2(x+y+z)
Ta có: \(2\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge9\)
\(=>\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2}\)
\(=>\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\ge\frac{9}{2}\)
\(=>\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\ge\frac{9}{2}\)
\(=>\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra <=>x=y=z
Vậy.........................
cm bài toán phụ :a2+b2>=ab
(a-b)2>= 0 => a2 -2ab+b2>=0 =>a2+b2>=2ab (1)
áp dụng (1) ta có : x2/y2 +y2/z2 >= 2x/z
y2/z2+z2/x2 >= 2y/x
x2/y2+z2/x2>=2z/x
=> 2(x2/y2 + y2/z2 +z2/x2 ) >=2(x/y+y/z +z/x)
=>x2/y/2+y2/z2 +z2/x2 >=x/y +y/z +z/x
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta lại có:
\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x+y+z=1\)
Làm nốt
Đây là toán lớp 7
bài này dễ cực!lớp 7 thui mak!dựa vào tính chất của dãy tỉ số bằng nhau mak làm nghen!mk hơi lười!kakakakaka^^