\(\frac{x1-1}{9}=\frac{x2-2}{8}=......\frac{x9-9}{1}\)biết x1+x2+........+x9= 90

tì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

dễ mà bạn.ban chỉ cần ad tc dãy tỉ số bàng nhau là được

\(\frac{x1-1}{9}=...=\frac{x9-9}{1}=\frac{x1-1+...+x9-9}{9+...+1}\)sau đó thay x1+...+x9 vào la ok

loại ócc như mày ế ,làm như z mà dk à ,sai hết cmnr

22 tháng 8 2017

Đặt \(\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=k\)

Áp dụng TC DTSBN ta có :

\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_8-8\right)+\left(x_9-9\right)}{9+8+....+2+1}\)

\(=\frac{\left(x_1+x_2+....+x_9\right)-\left(1+2+....+8+9\right)}{1+2+3+...+8+9}=\frac{900-45}{45}=19\)

\(\Rightarrow\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=19\)

\(\Rightarrow x_1=172;x_2=154;x_3=136;x_4=118;x_5=100;x_6=82;x_7=64;x_8=46;x_9=18\)

18 tháng 8 2019

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+...+1}\)

\(=\frac{\left[x_1+x_2+...+x_9\right]-\left[1+2+3+...+9\right]}{9+8+...+1}=\frac{900-45}{45}=19\)

Ta có : \(\frac{x_1-1}{9}=19\)=> \(x_1-1=171\)=> \(x_1=172\)

Từ đó ta tìm được : x2 = 154 , x3 = 136 , x4 = 118 , x5 = 100 , ...

Đến đây tìm được các x còn lại

15 tháng 11 2018

ai bit lam lam ho minh vs di ak pls

15 tháng 11 2018

lau thessssss

14 tháng 11 2018

Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)

\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)

\(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)

\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)

=\(\frac{90-45}{45}=\frac{45}{45}=1\)

=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)

22 tháng 8 2017

Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)

Áp dụng TC DTSBN ta có :

\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)

\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)

\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)

Vậy \(x_1=x_2=x_3=x_4=x_5=6\)