\(\frac{x + 4}{x - 1}\)+ \(\frac{x - 4}{x + 1}\) = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

\(\dfrac{2}{x^2-x-6}+\dfrac{x+1}{x^2+x-12}=\dfrac{x}{x^2+6x+8}\)

\(\Leftrightarrow\dfrac{2}{\left(x-3\right)\left(x+2\right)}+\dfrac{x+1}{\left(x-3\right)\left(x+4\right)}=\dfrac{x}{\left(x+2\right)\left(x+4\right)}\)

=> 2(x+4)+(x+1)(x+2)=x(x-3)

⇔2x+8+x2+2x+x+2=x2-3x

⇔x2+5x+10=x2-3x

⇔x2-x2+5x+3x=-10

⇔8x=-10

\(\Leftrightarrow\dfrac{-5}{4}\)

Vậy S={-\(\dfrac{5}{4}\)}

NV
6 tháng 4 2019

\(x\ne\left\{3;4;5;6\right\}\)

\(\frac{3}{x-3}-\frac{5}{x-5}=\frac{4}{x-4}-\frac{6}{x-6}\)

\(\Leftrightarrow\frac{3}{x-3}+1-\frac{5}{x-5}-1=\frac{4}{x-4}+1-\frac{6}{x-6}+1\)

\(\Leftrightarrow\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)

\(\Leftrightarrow x\left(\frac{1}{x-3}+\frac{1}{x-6}-\frac{1}{x-4}-\frac{1}{x-5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-4}+\frac{1}{x-5}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-4\right)\left(x-5\right)}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-9=0\\\left(x-3\right)\left(x-6\right)=\left(x-4\right)\left(x-5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\18=20\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\overline{x}=\frac{\frac{9}{2}+0}{2}=\frac{9}{4}\)

27 tháng 1 2018

\(A=\left(\frac{x+2}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{x+2}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(A=\left[\frac{\left(x+2\right)^2}{4-x^2}+\frac{4x^2}{4-x^2}-\frac{\left(2-x\right)^2}{4-x^2}\right]:\left[\frac{x\left(x-3\right)}{x^2.\left(2-x\right)}\right]\)

\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{4-x^2}\right]:\left[\frac{x-3}{x\left(2-x\right)}\right]\)

\(A=\frac{4x^2+8x}{4-x^2}:\frac{x-3}{x\left(2-x\right)}\)

\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(A=\frac{4x^2}{x-3}\)

27 tháng 1 2018

giúp mình với !!!

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

a.

$4(x+5)(x+6)(x+10)(x+12)=3x^2$

$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$

$4(x^2+17x+60)(x^2+16x+60)=3x^2$

Đặt $x^2+16x+60=a$ thì pt trở thành:

$4(a+x)a=3x^2$

$4a^2+4ax-3x^2=0$

$4a^2-2ax+6ax-3x^2=0$

$2a(2a-x)+3x(2a-x)=0$

$(2a-x)(2a+3x)=0$

Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$

$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$

Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$

$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

b.

$(x+1)(x+2)(x+3)(x+6)=120x^2$

$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$

$(x^2+7x+6)(x^2+5x+6)=120x^2$

Đặt $x^2+6=a$ thì pt trở thành:

$(a+7x)(a+5x)=120x^2$

$\Leftrightarrow a^2+12ax-85x^2=0$

$\Leftrightarrow a^2-5ax+17ax-85x^2=0$

$\Leftrightarrow a(a-5x)+17x(a-5x)=0$

$\Leftrightarrow (a-5x)(a+17x)=0$

Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$

$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$

Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$

$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$

Vậy.........

13 tháng 1 2018

bài 1:

\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)

<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)

<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)

vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0

nên x-2004=0=>x=2004

vyaj.......

bài 2:

\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)

<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)

<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)

<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)

vì 1/15+1/13+1/11+1/9 khác 0

=>x-100=0<=>x=100

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Lời giải:

Xét \(x< 0\Rightarrow \frac{x}{(x+2004)^2}< 0< \frac{1}{8016}\)

Xét \(x\geq 0\)

Ta có \((x+2004)^2-8016x=x^2+2004^2+4008x-8016x\)

\(=(x-2004)^2\geq 0\)

Suy ra \((x+2004)^2\geq 8016x\)

\(\Rightarrow \frac{x}{(x+2004)^2}\leq \frac{x}{8016x}=\frac{1}{8016}\)

Ta có đpcm

16 tháng 10 2017

@Akai Harumahelp me

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32