Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có \(P=\frac{x\sqrt{x}-\sqrt{x}}{x}=\frac{x-1}{\sqrt{x}}>0\)
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x-1>0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x>1\\x\ne0\end{cases}}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}-10\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}+2+\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2x-8}{x-4}\)
\(=\frac{2\left(x-4\right)}{x-4}\)
\(=2\)
\(Q=\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\)
\(Q=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{x\sqrt{x}-y\sqrt{x}+x\sqrt{y}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(R=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(R=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(R=\left(1+\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2.\left(1+\sqrt{a}\right)^2}\)
\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)