K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hàm số \(y=x^4-2m^2x^2+2m^2-m\)(với m là tham số) Xác định m để đồ thị hàm số đã cho có ba điểm cực trị là ba đỉnh của một tam giác có chu vi bằng \(2\left(1+\sqrt{2}\:\right)\) ............................................................................. Cách của em như sau ạ, mong chị và mọi người hướng dẫn em với: \(y=x^4-2m^2x^2+2m^2-m\) \(y'=4x^3-4m^2x\) \(y'=0\)\(\Leftrightarrow4x\left(x^2-m^2\right)=0\)...
Đọc tiếp

Cho hàm số \(y=x^4-2m^2x^2+2m^2-m\)(với m là tham số)

Xác định m để đồ thị hàm số đã cho có ba điểm cực trị là ba đỉnh của một tam giác có chu vi bằng \(2\left(1+\sqrt{2}\:\right)\)

.............................................................................

Cách của em như sau ạ, mong chị và mọi người hướng dẫn em với:

\(y=x^4-2m^2x^2+2m^2-m\)

\(y'=4x^3-4m^2x\)

\(y'=0\)\(\Leftrightarrow4x\left(x^2-m^2\right)=0\) \(\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-m^2=0\left(2\right)\end{matrix}\right.\)

Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi phương trình (1) có 3 nghiệm phân biệt

\(\Leftrightarrow\) phương trình (2) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow m>0\)

Với mọi \(m>0\) ta được \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-m^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m\\x=-m\end{matrix}\right.\)

Gọi \(A\left(0;2m^2-m\right)\), \(B\left(m;-m^4+2m^2-m\right)\), \(C\left(-m;-m^4+2m^2-m\right)\)

Ta có: B và C đối xứng nhau qua Oy và A thuộc Oy

\(\Rightarrow AB=AC=\sqrt{m^2+m^8}\), \(BC=\sqrt{4m^2}\)

Chu vi tam giác ABC là bằng \(2\left(1+\sqrt{2}\: \right)\)khi và chỉ khi

\(AB+AC+BC=\)\(2\left(1+\sqrt{2}\: \right)\)

\(\Leftrightarrow\)\(2\sqrt{m^2+m^8}\)\(+\sqrt{4m^2}=\)\(2\left(1+\sqrt{2}\: \right)\)

............................................................

Đến đây làm sao tiếp nữa ạ

1
AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Nguyễn An: xin lỗi em chị trả lời hơi muộn.

Hướng đi của em hoàn toàn ổn và tự nhiên rồi, nhưng có 1 vài cái lưu ý là:

1. Điều kiện để PT(2) có 2 nghiệm pb là $m^2>0\Leftrightarrow m\neq 0$ chứ không phải $m>0$

2.

Đến đoạn $2\sqrt{m^2+m^8}+\sqrt{4m^2}=2(1+\sqrt{2})$

$\Leftrightarrow \sqrt{m^2+m^8}+|m|=1+\sqrt{2}$

$\Leftrightarrow \sqrt{t^2+t^8}-\sqrt{2}+t-1=0$ (đặt $|m|=t\geq 0$)

$\Leftrightarrow \frac{t^2+t^8-2}{\sqrt{t^2+t^8}+\sqrt{2}}+(t-1)=0$

$\Leftrightarrow (t-1)\left(\frac{t+1+t^7+t^6+...+1}{\sqrt{t^2+t^8}+\sqrt{2}}+1\right)=0$

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0 với mọi $t\geq 0$

Do đó $t-1=0\Leftrightarrow |m|=t=1\Rightarrow m=\pm 1$ (thỏa mãn)

Thông thường những pt của mấy bài toán dạng này kiểu gì cũng ra nghiệm đẹp, nên dù thấy số ban đầu hơi xấu cũng đừng nản chí :v

1 tháng 10 2019

@Akai Haruma chị ơi giúp em với

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

NV
30 tháng 1 2019

Do \(\left(\dfrac{2}{\sqrt{5}}\right)< 1\)

\(\left(\dfrac{2}{\sqrt{5}}\right)^{\dfrac{1}{x}}< \left(\dfrac{2}{\sqrt{5}}\right)^{2017}\Leftrightarrow\dfrac{1}{x}>2017\Leftrightarrow0< x< \dfrac{1}{2017}\)

\(\Rightarrow S=\left(0;\dfrac{1}{2017}\right)\)