Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\left(3+\sqrt{5}\right)\left(\sqrt{\left(3-\sqrt{5}\right)^2}\right)\)=\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)
b)= \(\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{\sqrt{2^2.7}}{2}-2\)=\(\frac{2\left(3-\sqrt{7}\right)}{9-7}+\sqrt{7}-2\)=1
c) =\(\frac{3}{3\left(\sqrt{7}-2\right)}-\frac{3}{3\left(\sqrt{7}+2\right)}\)=\(\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}=\frac{\sqrt{7}+2-\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}\)=\(\frac{4}{7-4}=\frac{4}{3}\)
d) =\(\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)^{ }\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{\left(88-44\sqrt{3}\right)}{25-3}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{22\left(4-2\sqrt{3}\right)}{22}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(1+\sqrt{3}\right)\left(\sqrt{3}-1\right)\)=3-1 = 2
e) = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{7\sqrt{x}-3}{x-9}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\)= \(\frac{x-4\sqrt{x}+3}{x-9}+\frac{7\sqrt{x}-3}{x-9}+\sqrt{x}\)= \(\frac{x+3\sqrt{x}}{x-9}+\sqrt{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\sqrt{x}\)= \(\frac{\sqrt{x}}{\sqrt{x}-3}+\sqrt{x}=\frac{x-2\sqrt{x}}{\sqrt{x}-3}\)
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
a/
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{7-x}=a\\\sqrt[3]{x-5}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=3\\a^3-b^3=2\left(6-x\right)\end{matrix}\right.\) với \(a+b\ne0\)
Ta có hệ:
\(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{2}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a^3+b^3=2\\a-b=0\end{matrix}\right.\) \(\Rightarrow a=b=1\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{7-x}=1\\\sqrt[3]{x-5}=1\end{matrix}\right.\) \(\Rightarrow x=6\)
TH2: \(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{a^3+b^3}=\frac{a^2+ab+b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a^2+ab+b^2}{a^2-ab+b^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\ab=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b^3=2\end{matrix}\right.\\\left\{{}\begin{matrix}b=0\\a^3=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
b/
Lập phương 2 vế:
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=5x\)
\(\Leftrightarrow x+1+x-1+3\sqrt[3]{\left(x^2-1\right)}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)
\(\Leftrightarrow2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{5x}\right)=5x\)
\(\Leftrightarrow x=\sqrt[3]{5x\left(x^2-1\right)}\)
\(\Leftrightarrow x^3=5x\left(x^2-1\right)\)
\(\Leftrightarrow x\left(5\left(x^2-1\right)-x^2\right)=0\)
\(\Leftrightarrow x\left(4x^2-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{\sqrt{5}}{2}\\x=-\frac{\sqrt{5}}{2}\end{matrix}\right.\)
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)