Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
=> \(A=\frac{1}{1}-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}\)
\(A=\frac{2005}{2006}\)
mình giải nhé:
Ta có các số trong ngoặc có dạng: \(\sqrt{x\left(x+1\right)+\frac{1}{x+2}}< \sqrt{x\left(x+1\right)+\frac{1}{4}}\)chỗ này nếu bạn chưa hiểu mình sẽ nói nhé với \(x\ge3\)
Vậy đặt cả cái đề bài cần chứng minh là A. Ta có:
\(A< \sqrt{3.4+\frac{1}{4}}+\sqrt{4.5+\frac{1}{4}}+...+\sqrt{102.103+\frac{1}{4}}=3,5+4,5+...+102,5=5300\)
đấy là điều phải chứng minh nhé
\(\sqrt{1+\frac{8n^2-1}{\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{1+\frac{8n^2-1}{\left(4n^2-1\right)^2}}=\sqrt{\frac{\left(4n^2-1\right)^2+8n^2-1}{\left(4n^2-1\right)^2}}\)
\(=\sqrt{\frac{16n^4-8n^2+1+8n^2-1}{\left(4n^2-1\right)^2}}=\frac{4n^2}{4n^2-1}=1+\frac{1}{4n^2-1}=1+\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)
\(\Rightarrow S=1009+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=1009+\frac{1}{2}\left(1-\frac{1}{2019}\right)=...\)
\(\frac{\sqrt{2^3\cdot3^4\cdot5^5\cdot6^6\cdot7^7}}{2^2\cdot3^2\cdot5^6\cdot6^3\cdot7^3}=\frac{2\cdot3^2\cdot5^2\cdot6^3\cdot7^3\cdot\sqrt{2\cdot5\cdot7}}{2^2\cdot3^2\cdot5^6\cdot6^3\cdot7^3}=\frac{\sqrt{2\cdot5\cdot7}}{2\cdot5^4}=\frac{\sqrt{70}}{1250}\)