Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{5+\sqrt{24}}-\sqrt{2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{2}=\left|\sqrt{3}+\sqrt{2}\right|-\sqrt{2}=\sqrt{3}+\sqrt{2}-\sqrt{2}=\sqrt{3}\)
b/ \(\frac{3-2\sqrt{3}}{\sqrt{3}-2}=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}=\sqrt{3}\)
c/ \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)
d/ \(\frac{1}{1-\sqrt{2}}-\frac{1}{1+\sqrt{2}}=\frac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\frac{2\sqrt{2}}{1-2}=-2\sqrt{2}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
a) = \(5\sqrt{2}-3\sqrt{6}+3\sqrt{2}+5\sqrt{6}\)
= \(8\sqrt{2}+2\sqrt{6}\)
b) = \(2\sqrt{3}-4\sqrt{2}-5\sqrt{3}-\sqrt{2}\)
= \(-3\sqrt{3}-5\sqrt{2}\)
c) = \(\frac{\left(\sqrt{2}-1\right)\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)
=\(\frac{2\sqrt{2}+2-2-\sqrt{2}}{2^2-\sqrt{2^2}}\)
=\(\frac{\sqrt{2}}{4-2}\) = \(\frac{\sqrt{2}}{2}\)
d) = \(2\sqrt{6}-5\sqrt{6}+2\sqrt{2}\)
=\(-3\sqrt{6}+2\sqrt{2}\)
e) = \(8\sqrt{6}+3\sqrt{6}-6\sqrt{6}=5\sqrt{6}\)
f) = \(4\sqrt{3}+9\sqrt{3}-4\sqrt{3}=9\sqrt{3}\)
g) = \(10+5\sqrt{10}-5\sqrt{10}=10\)
h) = \(\frac{\left(3+\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}+\frac{\left(3-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
= \(\frac{9+3\sqrt{3}+3\sqrt{3}+3}{3^2-\sqrt{3^2}}+\frac{9-3\sqrt{3}-3\sqrt{3}+3}{3^2-\sqrt{3^2}}\)
= \(\frac{12+6\sqrt{3}}{9-3}+\frac{12-6\sqrt{3}}{9-3}\)
= \(\frac{12+6\sqrt{3}+12-6\sqrt{3}}{6}\)
= \(\frac{24}{6}=4\)
k) = \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right).\sqrt{7}+2\sqrt{21}\)
= \(\left(3\sqrt{7}-2\sqrt{3}\right).\sqrt{7}+2\sqrt{21}\)
= \(21-2\sqrt{21}+2\sqrt{21}=21\)
l) = \(\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{8}+2\right)}{\left(\sqrt{8}-2\right)\left(\sqrt{8}+2\right)}\)
= \(\frac{4\sqrt{6}+4\sqrt{3}-4\sqrt{3}-2\sqrt{6}}{\sqrt{8^2}-2^2}\)
= \(\frac{2\sqrt{6}}{8-4}=\frac{2\sqrt{6}}{4}=\frac{\sqrt{6}}{2}\)
Lời giải:
\(\frac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{4}{1-\sqrt{7}}\)
\(=\frac{\sqrt{12}-\sqrt{36}}{\sqrt{8}-\sqrt{24}}-\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}}+\frac{4(1+\sqrt{7})}{(1-\sqrt{7})(1+\sqrt{7})}\)
\(=\frac{\sqrt{12}(1-\sqrt{3})}{\sqrt{8}(1-\sqrt{3})}-(\sqrt{3}+1)+\frac{4(1+\sqrt{7})}{1-7}\)
\(=\frac{\sqrt{6}}{2}-(\sqrt{3}+1)-\frac{2(1+\sqrt{7})}{3}\)