Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{-3x}}{x^2-1}\)
Điều kiện để căn thức có nghĩa là :
\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
a, Với \(x\ge0;x\ne\frac{16}{9};4\)
\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)
b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)
\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)
\(\frac{7-3x}{x^4+1}\ge0do:x^4\ge0\Rightarrow x^4+1>0\Rightarrow\frac{7-3x}{x^4+1}\ge0\Leftrightarrow7-3x\ge0\Leftrightarrow x\le\frac{7}{3}\)
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)