Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)
\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)
Câu 2:
\(\Leftrightarrow1-cos6x=1+cos2x\)
\(\Leftrightarrow-cos6x=cos2x\)
\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
Câu 3:
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)
\(\Leftrightarrow cos2x+cos2x=1\)
\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Câu 4:
\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)
\(\Leftrightarrow-cosx+sinx=1+sinx\)
\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)
Câu 5:
Giống câu 3, chắc bạn ghi nhầm đề
c/
\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)
b/
\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
Tất cả đều ko phải dạng vô định, bạn cứ thay số vào tính thôi:
\(a=\frac{sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{2}}=\frac{\sqrt{2}}{\pi}\)
\(b=\frac{\sqrt[3]{3.4-4}-\sqrt{6-2}}{3}=\frac{0}{3}=0\)
\(c=0.sin\frac{1}{2}=0\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
\(sin3x=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=-\frac{\pi}{3}+k2\pi\\3x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{4\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{7}=\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{7}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{11\pi}{56}+k\pi\\x=\frac{25\pi}{56}+k\pi\end{matrix}\right.\)
\(sin\left(4x+1\right)=\frac{3}{5}=sina\) (với góc a sao cho \(sina=\frac{3}{5}\))
\(\Rightarrow\left[{}\begin{matrix}4x+1=a+k2\pi\\4x+1=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{4}-\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{7}=x-\frac{3\pi}{7}+k2\pi\\2x+\frac{\pi}{7}=\pi-x+\frac{3\pi}{7}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{4\pi}{7}+k2\pi\\x=\frac{3\pi}{7}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)
Đặt \(\frac{1}{4}=sina\Rightarrow sin\left(4x+\frac{\pi}{7}\right)=sina\)
\(\Rightarrow\left[{}\begin{matrix}4x+\frac{\pi}{7}=a+k2\pi\\4x+\frac{\pi}{7}=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{28}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{3\pi}{14}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
c.
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)
d.
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)
a.
\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)
\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
b.
\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\frac{\sqrt{3}}{2}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)\right)=sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}+\frac{\pi}{3}\right)=2cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)sin\left(\frac{\pi}{4}-\frac{x}{5}\right)\)
\(\Leftrightarrow cos\left(\frac{x}{5}-\frac{\pi}{4}\right)=\sqrt{2}cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)cos\left(\frac{x}{5}-\frac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\frac{x}{5}-\frac{\pi}{4}\right)=0\\cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{5}-\frac{\pi}{4}=\frac{\pi}{2}+k\pi\\\frac{2x}{5}+\frac{5\pi}{12}=\frac{\pi}{4}+k2\pi\\\frac{2x}{5}+\frac{5\pi}{12}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{15\pi}{4}+k5\pi\\x=-\frac{5\pi}{12}+k5\pi\\x=-\frac{5\pi}{3}+k5\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)
\(L=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan^3x-3\tan x}{\cos\left(x+\frac{\pi}{6}\right)}=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x\left(\tan^2x-3\right)}{\cos\left(x+\frac{\pi}{6}\right)}\)
\(=\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\left(\tan x-\sqrt{3}\right)\left(\tan x+\sqrt{3}\right)}{\sin\left(\frac{\pi}{3}-x\right)}=\sqrt{3}.2\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x-\sqrt{3}}{\sin\left(\frac{\pi}{3}-x\right)}\)
\(=6\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\sin\left(\frac{\pi}{3}-x\right)}{\cos x.\cos\frac{\pi}{3}\sin\left(\frac{\pi}{3}-x\right)}=-12\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{1}{\cos x}=-24\)
hmm đóng góp ý kiến , lớp 11 giờ đã học đạo hàm rồi nhỉ , đạo hàm trên tử và mẫu đi xong thay giá trị =pi/3 vào là xong đáp án sẽ là -3 căn 3