\(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

HELP ME !!!!

Đan...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

\(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\frac{x^3-6x^2y}{x-6y}\)

\(=\frac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

chúc bạn học giỏi 

6 tháng 11 2016

(x-y)3 - 3xy(x+y) + y3

x - 6y

x3 - 3x2y +3xy2 - y3 - 3x2y - 3xy2 + y3

x - 6y

x3 - 6x2y

x - 6y

x2(x-6y)

x - 6y

= x2

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

16 tháng 11 2015

\(=\frac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\frac{x^3-6x^2y}{x-6y}=\frac{x^2\left(x-6y\right)}{x-6y}=x^2\)

23 tháng 4 2016

smile làm đúng đó ai đồng ý thì ủng hộ nha

3 tháng 12 2019

Ta có :

\(VT=\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)

\(VT=\frac{-\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}=\frac{-\left(x+y\right)}{\left(x-y\right)^2}=\frac{-x-y}{\left(x-y\right)^2}=VP\)

Vậy .......................

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html

20 tháng 11 2017

1/

\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\dfrac{x^3-6x^2y}{x-6y}\)

\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

\(2\)/

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

3/

\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)

\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)

\(=\dfrac{n+1}{n+2}\)

4/

\(\dfrac{n!}{\left(n+1\right)!-n!}\)

\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)

\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)

\(=\dfrac{n!}{n!.n}\)

\(=\dfrac{1}{n}\)

5/

\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)

\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)

\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)

\(=\dfrac{-n-1}{n+3}\)

20 tháng 11 2017

Hỏi đáp ToánHỏi đáp Toán

6 tháng 11 2018

a) \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

= \(\dfrac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

= \(\dfrac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

=\(\dfrac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2-x-3\right)}\)

= \(\dfrac{3x^2-3x-x+1}{2x^2+2x-3x-3}\)

= \(\dfrac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x+1\right)-3\left(x+1\right)}\)

= \(\dfrac{\left(x-1\right)\left(3x-1\right)}{\left(x+1\right)\left(2x-3\right)}\)

Mình không chắc là đúng hoàn toàn nha!

6 tháng 11 2018

b) \(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

= \(\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

= \(\dfrac{x^3-6x^2y}{x-6y}\)

= \(\dfrac{x^2\left(x-6y\right)}{x-6y}\)

= \(x^2\)