Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+3x-1}{2-x}+x>0\Leftrightarrow\frac{5x-1}{2-x}>0\Rightarrow\frac{1}{5}< x< 2\)
\(\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x=-2\\1\le x< 2\\2< x< 7\end{matrix}\right.\)
Kết hợp lại ta có: \(1\le x< 2\)
1.
\(\frac{x^2+2x+5}{x+4}-\left(x-3\right)\ge0\)
\(\Leftrightarrow\frac{x^2+2x+5-\left(x-3\right)\left(x+4\right)}{x+4}\ge0\)
\(\Leftrightarrow\frac{x+17}{x+4}\ge0\Rightarrow\left[{}\begin{matrix}x>-4\\x\le-12\end{matrix}\right.\)
2.
\(\frac{x^2-3x-1}{2-x}+x>0\)
\(\Leftrightarrow\frac{x^2-3x-1+x\left(2-x\right)}{2-x}>0\)
\(\Leftrightarrow\frac{-x-1}{2-x}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)
3.
\(\frac{3x-47}{3x-1}-\frac{4x-47}{2x-1}>0\)
\(\Leftrightarrow\frac{\left(3x-47\right)\left(2x-1\right)-\left(4x-47\right)\left(3x-1\right)}{\left(3x-1\right)\left(2x-1\right)}>0\)
\(\Leftrightarrow\frac{-6x\left(x-8\right)}{\left(3x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{3}\\\frac{1}{2}< x< 8\end{matrix}\right.\)
4.
\(\frac{x\left(x+2\right)+9}{x+2}-4\ge0\)
\(\Leftrightarrow\frac{x^2+2x+9-4\left(x+2\right)}{x+2}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x+2}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x+2}\ge0\Rightarrow x>-2\)
5.
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Rightarrow\left[{}\begin{matrix}x\le-6\\1\le x< 2\\2< x< 7\\x=-2\end{matrix}\right.\)
6. Xem lại đề
a/
\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Rightarrow1< x\le2\)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)